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MOTION OF AEROSOL PARTICLES HEATED BY 

I N T E R N A L  S O U R C E S  IN 

OF T E M P E R A T U R E  AND 

G R A D I E N T S  

Y u .  I .  
A. V. 

E X T E R N A L  F I E L D S  

C O N C E N T R A T I O N  

Y a l a m o v ,  M. F .  B a r i n o v a ,  UDC533.72 
M y a g k o v ,  a n d  E.  R .  S h c h u k i n  

A theory is constructed for the motion of spherical particles in gaseous media under the action of forces 
resulting from a nonuniform distribution of temperature and concentration, such a nonuniformity being caused 
by arbi t rar i ly  oriented external temperature  and concentration gradients as well as by internal heat sources. 
Expressions are derived for the total force acting fro.m the gas on an aerosol particle and for the rate at which 
the motion of such a part icle stabilizes. Methods are shown by which the velocity of internally heated par t i -  
cles and the forces  acting on them, in any external field of temperature and concentration gradients, can be 
calculated. In the case of a spherical part icle moving due to internal heating only, an analysis  of the process 
includes also the causes of photephoresis. 

Dep.No. 1376-79. (Article received September 25, 1978; abstract  received 
March 5, 1979.) 

EXPERIMENTAL STUDY CONCERNING THE EFFECT 

OF COMPLIANT SURFACES ON THE INTEGRAL 

CHARACTERISTICS OF A BOUNDARY LAYER 

V. I .  K o r o b o v  UDC 532.526-597.31 

Studies have already been made concerning the interact ion of compliant boundaries with an oncoming 
s t ream,  these boundaries being in most cases between air  and membrane surfaces.  The view prevails ,  based 
on hydrobionic studies, that elastic surfaces such as integument play an active functional role in the hydro- 

dynamics of aquatic animals. 

Here results are  presented of an experimental study concerning the hydrodynamic friction at compliant 
monolithic surfaces,  taking into account the morphofunctional structure of external integuments in aquatic 
animals. These experiments were performed in a water flume with an insert  on a tensometric mounting in 

the lower wall of the test  segment. 

The main results of this study can be formalized as follows. 

Compliant surfaces can have a significant effect on the integral characteris t ics  of a boundary layer and 
a compliant surface with constant mechanical character is t ics  has, moreover ,  an effect on a boundary layer 
within a specific relatively narrow range of the Reynolds number with the situation and the width of the peak 
within that range depending on several  parameters  of the surface.  

Dep.No. 1368-79. (Article submitted December 5, 1978; abstract  received March 
23, 1979.) 
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EFFECT OF "WHITE NOISE" 

OF INERTIAL SEPARATION 

ON T H E  P R O C E S S  

E .  A .  E s e e v  UDC 531.38 

The s tochas t ic  d i f ferent ia l  equation 

2 

dt - ~ 1 -  - - + r  (1 )  /- 

is appl icable  [1] to t r ans ien t  turbulent  motion of a whir led  d i spe r s e  s y s t e m  where  t r a j e c t o r i e s  of all  pa r t i c l e s  
of the c a r r i e r  med ium have been a s s um ed  to be a r c s  of concentr ic  c i rc les  and the movement  of the suspen-  
sions (Stokes f ract ions)  re la t ive  to the d i spe r s ing  medium has  been a s sumed  to be quasis teady.  As is well  
known [2], to Eq. (1) co r re sponds  the equation 

2 
8g~ d2f (r~ [1 P ~  V~ d[ (ro) -- - -1.  (2) 

2 dr o " + ~ \  - -  Pl ] ro dro 

Let t ing v~ = c o n s t  r~ and approx imat ing  some prof i le  of tangential  ve loc i t ies  of the c a r r i e r  medium 
with ~, = 0.5, we can r ewr i t e  Eq. (1) in d imens ion less  f o r m  as 

~V fro) , d f  fro) 
aT~ ar5 

(3) 

where  a and/3 a re  the d imens ion less  coeff icients  of diffusion and dr i f t ,  r e spec t ive ly .  

The solution to Eq. (2) for  the boundary conditions 

- - - -. d7 (~..} dr(R0 _o ,  I ( ~ 2 ) + ~  - o ,  
dro 

(4) 

i s  

(5) 

Here  R1 and R2 denote,  r e spec t ive ly ,  the inside boundary and the outside boundary of the sepa ra t ion  zone,  and 
p a r a m e t e r  ). c h a r a c t e r i z e s  the intensi ty of breakzway of pa r t i c l e s  of some f rac t ion  f r o m  boundary R 2. In ex -  
p r e s s ion  (5) the f i r s t  t e r m  is a lways pos i t ive ,  the second t e r m  is a lways negat ive ,  and the th i rd  t e r m  is  d e t e r -  
mined by p a r a m e t e r  ~t. 

An inspect ion as  to whether  the same  solution (5) holds t rue  a lso  for  some other  e m p i r i c a l  v~0 p ro f i l e s ,  
speci f ica l ly  fo r  y = 1 and y = - 1 ,  made by numer ica l  in tegrat ion of the fo rward  F o k k e r - P l a n c k - K o l m o g o r o v  
equation for  p r o c e s s  F(t~ with a probabi l i ty  densi ty w(F, ~) and conditions at R1, 1~ 2 analogous to boundary condi-  
t ions (4), has  r evea led  a complete  a g r e e m e n t  of the resu l t s  with solution (5). As the value of coeff icient  a in-  
c r e a s e s ,  the calculated f rac t ion  ef f ic iencies  at cor responding  instants  of t ime  t within the p r o c e s s  per iod in- 
c r ea se  and the shape of the v~p prof i le  does not influence this t rend in any way. 

N O T A T I O N  

r , ~  
t 
v~ 
T 

P, Pl 
g 

f 

are  the po la r  coordina tes ;  
is the t ime ;  
is the tangential  component  of the veloci ty  f ie ld in the d i spe r s ing  medium;  
is the re laxat ion  t ime of a s epa ra t ing  pa r t i c l e ;  
a re  the physica l  densi t ies  of the med ium and of a pa r t i c l e ,  r e spec t ive ly ;  
is the p a r a m e t e r  cha rac t e r i z ing  a spec i f ic  d i spe r s ion  sy s t em;  
a re  the "white noise" and i ts  intensi ty;  
is the ave rage  t ime  for  a par t ic le  to reach  the boundary;  
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r0 
r0 = 2 r 0 /  
(Ri + R2) 

is the initial dis tr ibut ion of the polar  radius;  

is the f e tc . ,  d imensionless  cha rac t e r i s t i c s  of cor responding  quanti t ies.  

1= 

2. 

. 
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S T U D Y  O F  T H E  P - - p -  T R E L A T I O N  F O R  2 , 3 - B U T Y L E N E  

G L Y C O L  O V E R  W I D E  R A N G E S  O F  T E M P E R A T U R E  

A N D  P R E S S U R E  

T .  A .  A p a e v ,  I .  G .  I m a n o v a ,  
a n d  A .  M. K e r i m o v  

UDC 536.2 

The density of liquid 2,3-butylene glycol was measu red  for  the f i r s t  t ime over  the t empera tu re  range 
f rom 290 to 620~ and the p r e s s u r e  range f ro m  1 to 800 bar  by the method of hydros ta t ic  weighing. Some of 
the exper imenta l  P - p - T  data  a r e  tabulated here .  

The maximum rela t ive  e r r o r  of density de te rmina t ion ,  including possible measuremen t  and convers ion 
e r r o r s ,  was +0.1%. 

P roc e s s ing  and evaluation of the P - p - T  d a t a  f o r  2,3-butylene glycol were  done according to the A. M. 
K e r i m o v - T .  A. Apaev method,  which these authors  had proposed for  liquid hydrocarbons .  The sect ions 
ac ro s s  i so therms  at constant-densi ty  coordinates  were  found to be s t ra ight  l ines ,  for  2,3-butylene glycol too, 
accura te ly  within +0.12% of density values.  F o r  descr ib ing  the P - T  relat ion at p = const ,  accordingly,  we 
used the equation 

p = A(p) + B (p) T, (1) 

with A and B both f rac t ions  of p, P denoting the p r e s s u r e  on the liquid (bar), and T denoting the t e m p e r a -  
ture  (~ 

On the basis of r igorous  thermodynamic  analys is ,  the coefficients in Eq. (1) can be shown to have the 
physical  significance of 

Otp OP 

TABLE 1. Density of 2,3-Butylene Glycol ,  p- 10 -3 kg/m 3 

P, bar 

1,0123 
99,012 
197,01 
295,01 
393,01 
491,01 

589,01 
687,01 
785,01 

291,37 

0,9962 
1,0014 
1,0062 
1,0110 
1,0155 
1,0194 
1,0232 
1,0268 
1,0302 

T, "K 

350,2? 

0,9484 
0,9547 
O,96O6 
0,9667 
0,9724 
0,9780 
0,9834 
0,988I 
0,9924 

408,15 

0,8985 
0,9059 
0,9132 
0,9205 
0,9277 
0,9345 
0,9412 
0,9479 
0,9546 

469,92 

o,~i58 
0,8570 
0,8674 
0,8770 
0,8859 
0,8948 
0,9037 
0,9126 

5t3,99 

0,~44 
0,8100 
0,8239 
0,8364 
0,8474 
0,8580 
0,8677 
0,8772 

568,15 

0,~12 
0,7451 
0,7648 
0,7808 
0,7946 
0,8069 
0,8183 
0;8294 

623,1~ 

O, 6"070 
0,6618 
0,6946 
0,7191 
0,7391 
0,7557 
0,7696 
0,7824 
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Here ~ is the energy of in termolecular  interact ion and V is the volume. Express ion (2) can easi ly be reduced 
to the fo rm A = -dr  and, the re fore ,  dq~ = - A d V ,  since V = #.iv, with # denoting the molecular  mass  and v = 
1/p denoting the specific volume of the liquid at given values of the state p a r a m e t e r s ,  so that 

d~ = - ~A (v) dr. (3) 

Inasmuch as the curve of A = f(v) asymptot ical ly  approaches  the v axis,  integrating the express ion (3) 
f rom a fixed specific volume v o to ~ will yield the energy of in te rmolecular  interaction 

qJ=--p.~ A(v) dv. 
rd o 

Dep.No. 1370-79. (Article received October 2, 1978; abs t rac t  received 
March 19, 1979.) 

D I E L E C T R O M E T R I C  I N S P E C T I O N  A N D  

H I G H - F R E Q U E N C Y  D R Y I N G  O F  

H E T E R O G E N E O U S  M A T E R I A L S  

N.  V.  S e d y k h  a n d  L .  G. S e d y k h  

CONTROL OF 

UDC 66,047.354 

With a view toward optimization of the drying p roces s  in microwave fields,  an ext remal  problem mathe-  
matical ly formal iz ing  this p rocess  is considered here.  

In o rde r  to solve this problem in l inear  p rog ramming ,  it is necessa ry  to measure  the d ie lec t r ic  p a r a m -  
e te r s  of the object being dr ied:  its d ie lec t r ic  constant e, loss tangent t an5 ,  and relaxation time ~'. 

An experimental  determinat ion of e, tan 6, and T during the drying p rocess  is not possible by c lass ica l  
methods because of the lengthiness of this p rocess .  There fo re ,  plotting the d ie lec t r ic  spectra  [1] by the pulse 
method is proposed here  for  this purpose.  

Into the sys tem under considerat ion is t ransmit ted  a rec tangular  pulse signal whose Four i e r  spec t rum 
extends over  a very  wide frequency range.  

A Four i e r  analysis  of the incident pulse as  well as of the pulses ,  respect ive ly ,  reflected by and t r ans -  
mitted through the object yields quantitative data about the frequency dependence of the d ie lec t r ic  proper t ies  
of the mater ia l .  

Using the d ie lec t r ic  pa r ame te r s  and approximately regarding  the object being dried as a two-component  
mixture ,  one can calculate its mois tu re  content according  to the relat ions for  d ie lec t r ic  mixtures  [2]. As the 
select ion c r i t e r ion  we use the re laxat ion t ime v and the interval  of t ime distribution. 

Die lec t romet r i c  inspection makes it possible to regulate  the drying p rocess  by vary ing  e i ther  the power 
output or  the frequency of the microwave osci l la tor .  

The proper  mode of regulat ion can be selected by a computer ,  upon checking the actual p rocess  conditions 
against the p resc r ibed  ones,  on the basis of a simulation of the p rocess  in the form of the solution to the s y s -  
tem of equations descr ib ing  heat and mass  t r ans fe r  during microwave heating. 

It is proposed that Pont ryagin ' s  principle of the maximum [3] be applied to the forming of control signals 
which will optimally fast  v e e r  the sys tem (object being dried) to ~he prescr ibed  condition. 

An analysis  of the proposed a lgor i thms is made here  f o r  the case of drying a yeas t  suspension in m i c r o -  
wave fields at optimum frequencies ,  with cur rent  correc t ion  of the p rocess  to optimality.  Application of this 
method has made it possible to acce lera te  the drying p rocess  and render  it more  economical .  
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R A D I A T I V E  H E A T  T R A N S F E R  IN A C O A X I A L  S Y S T E M  

OF TWO C O N T I N U O U S  C Y L I N D E R S  WITH A 

P E R F O R A T E D  ONE B E T W E E N  T H E M  

A. V. R u m y a n t s e v ,  O. N. B r y u k h a n o v ,  
and V. R.  B a z i l e v i c h  

UDC 536.24 

The net fluxes of radiation energy flowing between the elements of a system which consists of three in- 
finitely long coaxial cylinders, the middle cylinder with holes in the surface, are determined in the diffusion 
approximation from given temperatures and opticogeometric characteristics.  The problem is solved by the 
general zonal method, for which expressions are derived describing the mean angular coefficients of radia- 
tion: 

Here ~ik = Di/Dk are the ratios of diameters of the cylindrical surfaces and/3 is the perforation index of sur- 
face F2. Subscripts 1 and 3 refer to convex surfaces, subscripts 2 and 4 refer to concave surfaces. 

A numerical evaluation of the calculated results reveals a nonlinear dependence of the net energy fluxes 
radiated by surfaces F 2 and F 4 on the parameter ~. The energy flux from surface F I increases monotonically 
with increasing ~, which can be explained by a decrease in the shielding effect of the perforated cylinder. The 
energy flux radiated by surface F 3 decreases linearly with increasing ~, owing to a decrease in the surface 
area. The energy fluxes radiated by surfaces F 2 and F 4 depend nonlinearly on the variable 8. 

The function describing the net flux from surface F 2 to surface F 4 has a maximum which shifts toward 
lower values of ~, as the emissivity s decreases. The anomalous radiation characteristic of this surface is 
due to three differently influencing causes: 1) perforation (cavity) effect; 2) change in the magnitude of the 
radiation flux impinging on the receiver surface as the perforation area changes; and 3) change in the area of 
the emitter surface as ~ changes. These factors make this function nonlinear with a maximum. 

The perforated middle cylinder can be regarded as shield with holes between the two continuous cylin- 
ders. A comparison of energy fluxes impinging on surface F 4 with the presence of respectively a perforated 
or continuous cylinder in the system at the same temperatures in each case, indicates their ratio is larger 
than unity for any values of ~ and ~. The difference between the magnitudes of energy fluxes increases with 
lower ~ values and this trend is attributable to the perforation effect, which significantly influences the pattern 

of radiation from surface F 2. 

These theoretical data also yield the energy radiated in a system of coaxial cylinders with a continuous 

one inside and a perforated one outside. 

Dep.No. 1374-79. (Article received October 3, 1978; abstract received 
March 26, 1979.) 
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ANGULAR COEFFICIENTS FOR A. PARTIALLY 

SHIELDED CYLINDRICAL SURFACE 

V .  A .  A r k h i p o v  UDC 536.3 

The angular  radia t ion coeff icients  for  the su r f aces  of  a disk and of an infinitely long cyl inder ,  s e p a -  
ra ted  by a shield pa ra l l e l  to the disk and having a d iaphragm coaxial  with it ,  a r e  calculated by the method of 
numer i ca l  in tegra t ion,  a s s um i ng  that the no rma l  to the disk at its cen ter  i n t e r sec t s  the cyl inder  axis at r ight  
angles.  Such a configurat ion is of in t e res t ,  e .g . ,  in the design of optoe lec t ronic  equipment  for  diagnosis  of 
p l a sma  je t s  with a l a se r .  The mean  angular  coefficient  is calculated accord ing  to the genera l  re la t ion  for  r 
wr i t ten  in a f o r m  appl icable  to this p a r t i c u l a r  geometry :  

i i / q~l,z= (--~rl) ~ dz j" (L--Rcos~)d~ rdr (Rz'~-L~-l-z~r2--2RLc~176 
0 0 0 O 

F o r  the va r i ab l e  in tegra t ion l imi t s  zk(r ,  r ~), }k(r, r which define the f ield of v is ion ,  the analyt ical  e x p r e s -  
sions 

L r  z - -  (L  - -  l )  r sin ap r~ -- r sin lp 
~h=arcsin R 1 / 1 2 - k - ( r z - - r s i n ~ - ) ~ -  --arctg l 

a r e  obtained. 

On the ba s i s  of the a lgor i thm se t  up here ,  ca lcula t ions  a r e  made  and graphs  a r e  plo~e~t-for m e a n  and 
local  (with the d isk  elongated into an e l e m e n t a r y  area)  angular  coeff ic ients  co r respond ing  to va r ious  values  
of the g e o m e t r i c  p a r a m e t e r s  of the given radia t ion  sy s t em.  

N O T A T I O N  

l is the d is tance  between d i sk  and shield;  
L is the d is tance  f r o m  the d isk  to the cyl inder  axis ;  
r,~0 a r e  the cyl indr ica l  coordinates  of a point on the d isk  su r face ;  
rl  is the d isk  rad ius ;  
r 2 is the d iaphragm radius ;  
R is the cyl inder  rad ius ;  
z,~ a r e  the cyl indr ica l  coordinates  of a point on the cyl inder  su r face .  

Dep.No.  1377-79. (Article r ece ived  October  23, 1978; a b s t r a c t  
r ece ived  F e b r u a r y  27, 1979.) 
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HEAT TRANSFER BETWEEN A DOUBLE-LAYER PLATE 

AND AN EMITTING AND SCATTEHING MEDIUM 

IN MOTION 

F. N. Lisin and I. F. Guletskaya UDC 536.3 

A gray  emi t t ing ,  absorb ing ,  and sca t t e r ing  medium moves  through a s lot  channel with gray wai ls .  The 
bot tom wal l  is  a doub le - l aye r  pla te  of a given thickness  and with known t h e r m a l  conductivi t ies .  The velocity 
p rof i l e  is  pa rabo l ic .  The  t h e r m a l  f lux at  the lower  su r face  of the doub le - l aye r  plate is given as a function of 
the x coordinate ,  and the t e m p e r a t u r e  of the top wall  is given as constant  T w. In d imens ion less  form,  the 
p rob l em is  wr i t t en  in the f o r m  of equation 

u (*1) aO ~'8 Npe div ~ (i) 
Npe ~ ~ o~ ~Bo 

fo r  the energy  of the moving  m ed i um ,  and equation 

8zOi 8 ~  = O, i -- I, 2.denoting the respective laye.~, (2) ~ + o.---'7- 

fo r  the heat  t r a n s f e r  within the l a y e r s  of the p la te ,  with the boundary conditions 

O ~ t  at ~=0 ;  0:=0cTat 3>0;  1]=1; 

O0 Pe - r  00~ 
0~l Be qcv= ~i -~q at ~ = 0; 

00~ OO~ ~ 0  at x~O,  ~-:L, 

k.~ 00, _ 00, O,(x, ~l)=O,(~, ~l) at ~l=--S~, 
OY I aTl ' 

0~ 

where  ~ = y/b;  ~ =  x/b; 0 = T/T0; kl = ~.t/k; k~ = xlA2; ~ = St/b; S~ = s2/b; ~r = qr(~)/~0T~. 

The d ivergence  of radia t ion flux is found f r o m  the solution to the t r a n s f e r  equation,  in the Pi a p p r o x i m a -  
tion of the method of spher i ca l  h a r m o n i c s ,  and it includes the mean  sca t t e r ing  cosine.  On the bas is  of a 
numer i ca l  solution,  the dependence of the Nusse l t  number  on the optical  th ickness  is analyzed for  radia t ive  
flux and convective flux to the plate  and to the top wall.  The quantity of hea t  t r a n s f e r r e d  by radiat ion to the 
wai l s ,  as  a function of T O (1 - T), p a s s e s  through a m a x i m u m  within the 1.1-1.2 range  {r 0 denoting ~he optical  
th ickness  a n d y  denoting the ra t io  of s ca t t e r i ng  coeff icient  to at tenuation coefficient).  On the basis  of ca lcu la -  
t ions is a l so  analyzed the dependence of the h e a t - t r a n s f e r  ra te  on the ra t io  of t he rma l  conductivi t ies k 2 = kl/k 2. 
As k 2 i n c r e a s e s ,  the t e m p e r a t u r e  at  the ~ = 0 su r face  r i s e s  and this af fec ts  the cooling of the medium in the 
channel. The higher  t he  value of k2 i s ,  the h igher  l ie the curves  of the radiat ion Nusse l t  number  as a function 
of the channel length. 

Dep.No.  1380-79. (Article r ece ived  August  22, 1978; a b s t r a c t  r ece ived  
March  30, 1979.) 
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EXAMINATION AND CALCULATION OF THE ENERGY 

CHARACTERISTICS OF RADIATIVE HEAT TRANSFER 

IN A RADIATION SYSTEM CONSISTING OF TWO 

COAXIAL CYLINDERS OF DIFFERENT LENGTHS AND 

SEPARATED BY AN ATTENUATING MEDIUM 

Yu. A. Surinov and V. V. Rubtsov UDC 536.3 

The second va r i an t  and the third va r i an t  of the genera l ized  zonal method accord ing  to Surinov [1-3] a re  
applied to a n u m e r i c a l  ana lys i s  and solution of the mixed  p rob l em of rad ia t ive  hea t  t r a n s f e r  in a rad ia t ion  sys t em,  in 
the case  where  the l a t t e r  is bounded by two coaxial  cyl inders  of d i f ferent  finite lengths and filled with an ab-  
sorb ing  as well  as  i so t rop ica l ly  s ca t t e r ing  med ium so that  it can be r ega rded  as a single i so the rma l  vo lumet r i c  
zone at a given t e m p e r a t u r e .  The boundary su r face  F of th i s  s y s t e m  is  subdivided into s ix zones (two l a t e r a l  
su r f aces  of the inner  cy l inde r  and the outer  cy l inder ,  r e spec t ive ly ,  a l so  the two base  su r f aces  of each). Given 
a r e  the t e m p e r a t u r e s  of the inner cyl inder  at  its l a t e r a l  and both base  s u r f a c e s ,  a l so  at  one of the base  su r faces  
of the outer  cy l inder ,  and the net rad ia t ive  flux at the other  base su r face  and the l a t e r a l  su r face  of the outer  
cyl inder .  De te rmined  a re  the su r face  dens i t ies  of the net radia t ion flux a t  zones of given t e m p e r a t u r e s  and the 
t e m p e r a t u r e  f ie lds  of zones  with given radia t ion f luxes ,  a l so  the volume densi ty of the net radia t ion flux and 
the sphe r i ca l  radia t ion vec to r  at in ternal  points of the sys t em.  

F o r  the purpose  of de te rmin ing  these energy  c h a r a c t e r i s t i c s  of radia t ion,  a p r e l i m i n a r y  numer i ca l  
evaluat ion was  made of the va r ious  op t i cogeomet r i c  r e so lv ing  functions and,  pa r t i cu l a r l y ,  the genera l ized  
r e so lven t  angular  radia t ion coeff icients  [I(Mi, Fk) as well  as the genera l ized  reso lven t  solid angles  II (1) (M, 
Fk) accord ing  to the e x p r e s s i o n s  

6 

II (M~, Fk) = ~ (Mi, Fk) + X RjlIj~2 (Mi, Fj) 2 7 -~  ]~(1) (~/, F~) A (Mi, Y); 
f = l  

(M~cFI; i, k =  1, 2, . . . ,  6); 
6 

II(~(M, F/0+ x (M, F]) + --~ IhD(V, Fh) A(t)(M, V); (MeV). 
f=l 

The re su l t s  of this n u m e r i c a l  evaluat ion a re  p re sen ted  in graphica l  f o r m  depict ing the r e spec t i ve  r e l a -  
t ions for  the ene rgy  c h a r a c t e r i s t i c s  of radiat ion.  Noteworthy a r e  the d imens ion less  boundary c h a r a c t e r i s t i c s  
of radia t ion as functions of the coord ina tes ,  obtained fo r  va r ious  values  of the Bouguer  number .  The effect  
of s c a t t e r i n g  by the med ium on these  radia t ion c h a r a c t e r i s t i c s  is a l so  examined.  

1. 
2. 
3. 
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A P P R O X I M A T E  A N A L Y S I S  O F  T E M P E R A T U R E  F I E L D S  

IN C O A T I N G S  D U R I N G  E N A M E L I N G  O F  C O N D U C T O R S  

N. A.  T s v e t k o v  a n d  A .  S. L y a l i k o v  UDC 536.33.01:621.315.33 

The p r o b l e m  of r a d i a t i v e - c o n v e c t i v e  heat  t r a n s f e r  involving conductors  is fo rmula ted  so as to apply to 
the technology of enamel ing  f r o m  a me l t  in two e x t r e m e  cases  (an insulation coating r e spec t ive ly  opaque and 
t r a n s p a r e n t  to  t h e r m a l  radia t ion) .  

A wi re  and an e n a m e l  coat ing a r e  r e p r e s e n t e d  as two cyl indr ica l  bodies ,  whereupon the re la t ive ly  thin 
coat ing is a s s u m e d  to be f lat .  Owing to low values  of the Biot  number  fo r  wi re  (copper ,  a luminum,  constantan,  
manganin,  and other  m e t a l s ) ,  the l a t t e r  could be r e g a r d e d  as  a the rmal ly  thin body. 

A n u m e r i c a l  ana lys i s  of the resu l t ing  s y s t e m  of d i f ferent ia l  equations is l imi ted  in scope,  because  of the 
length of machine  t i m e ,  and t h e r e f o r e  an approx ima te  analyt ical  solution is  additionally obtained wi th the  a ldof  
a Laplace  in tegra l  t r ans fo rma t ion .  The sought fou r th -deg ree  t e m p e r a t u r e  functions a r e ,  m o r e o v e r ,  approx i -  
ma ted  by p i e c e w i s e - l i n e a r  functions with 20~C l inea r  s egmen t s .  The coefficients  of this approximat ion,  which 
have  been  ca lcu la ted  be forehand ,  a re  given in a tab le .  

With the aid of these  solut ions ,  the influence is analyzed which the p r o c e s s  conditions in the act ive 
chamber  of a hor izonta l  enamel ing  oven have on e s t ab l i shmen t  of the t e m p e r a t u r e  level  and on the magnitude 
as  wel l  as the d i rec t ion  of the t e m p e r a t u r e  gradients  a c r o s s  the coat ing th ickness  in the said two e x t r e m e  
cases .  

I t  is demons t r a t ed  that  in the case  of a coating t r a n s p a r e n t  to t he rma l  radia t ion one can es t ima te  the 
m a x i m u m  r a t e s  of hea t  t r e a t m e n t  with r a d i a t i v e - c o n v e c t i v e  hea t  applicat ion to the w i r e -  coating sys tem.  

The r e su l t s  of this study sugges t  that  in enamel ing  ovens fo r  conductors  t r ea t ed  in a me l t  it is expedient  
to es tab l i sh  two zones with s epa ra t e  regulat ion of the bas ic  p r o c e s s  p a r a m e t e r s  ( t empera tu re  and velocity of 
the hea t  c a r r i e r ,  t e m p e r a t u r e  at  the wal l  su r faces  of the ac t ive  chambe r  a s ,  e . g . ,  in VRE-144 ovens of the 
I ta l ian Sicme Co. for  enamel ing  f r o m  a solution}. 

F r o m  economic  cons idera t ions  and l imi ta t ions  on the capabi l i t ies  of m a t e r i a l s ,  one can de te rmine  the 
l eng th  of the f i r s t  zone and p r e s c r i b e  i ts  p r o c e s s  p a r a m e t e r s  so that the t e m p e r a t u r e  level  in the conductor 
will  r each  80-90% of the op t imum t e m p e r a t u r e  for  insulat ion curing. 

In the second zone m u s t  be e s t ab l i shed  the op t imum magnitude and the n e c e s s a r y  d i rec t ion  of the t e m -  
p e r a t u r e  gradient  a c r o s s  the coating th ickness  so that ,  while the op t imum t e m p e r a t u r e  level  is mainta ined in 
the conductor,  the insulat ion l a y e r  will  cure  p rope r ly .  

Dep.No.  1367-79. (Article r ece ived  J a n u a r y 3 1 ,  1979; a b s t r a c t  r ece ived  
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ASYMPTOTIC SOLUTION TO THE PLANE STEADY-STATE 

PROBLEM IN THE THEORY OF HEAT CONDUCTION WITH 

A BOUNDARY CONDITION OF THE THIRD KIND APPLIED 

T O  A C Y L I N D R I C A L  P I P E  B U R I E D  IN S O I L  

B.  A.  V a s i l ' e v  UDC 517.946 

Let  it be requi red  to de termine  the s teady-s ta te  t empera tu re  distr ibution between an infinitely long c i r -  
cular  cyl inder  and a plane t a rge t  to it ,  when the surface  of the cylinder emi ts  a uni formly  dis t r ibuted the rmal  
flux and the plane surface  is cooled according to Newton's  law by a medium at ze ro  t empera tu re  [1]. With the 
aid of a F o u r i e r  integral  t r an s fo rm  in a sys tem of degenerate  bipolar coordinates ,  this problem can be reduced 
to the equation 

M"(v) - -ha  cthv M(v) 2shy 
v ch~v , O<v<~o, (1) 

to be solved for  the boundary conditions 

M(v)=o(vl+e), v-*+O, 8>0, lira M(v)=O, 

where  M(v) is an auxi l iary function, unknown, and h is a posit ive constant;  a is the cyl inder  d iameter .  

F o r  low values of the p a r a m e t e r  ha Eq. (1) reduces  to a Fredholm integral  equation of the second kind, 
which can be solved by the method of success ive  approximations.  The kerne l  of the solution appears  i n t e r m s  of 
modified Besse l  functions [2]. Fo rh igh  values of the p a r a m e t e r  ha, the solution to Eq. (1) is sought in the fo rm 
of an asymptot ic  s e r i e s  

M (v) = ~ Mh (v) (ha) - h  . (2) 

The t e r m s  in s e r i e s  (2) a re  success ive ly  de te rmined  f rom the r e c u r r e n c e  re la t ions  

2vshSv 
MI(V)-- ch4v , Mh+l(v)=vthvM~(v)o 

Af ter  the solution to Eq. (1) has been found, the t e m p e r a t u r e  distr ibution over  the plane can be wri t ten  as 

Q { 1 S cthv cosv~dv} ' T(~)= " ~  ~ a  - -  M(v)-' v 
0 

where  K is the t he rma l  conductivity; Q, the rma l  flux pe r  unit t ime pe r  unit length; and/3, curv i l inear  coord i -  
nate of points on the tangent plane. 
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C A L C U L A T I O N  OF T R A N S I E N T  T E M P E R A T U R E S  

S Y S T E M S  OF P L A T E S  AND B E A M S  

V.  F .  K r a v c h e n k o  a n d  V.  M. Y u d i n  

IN 

UDC 536.24.02 

Under consideration is the problem of heating a plane system of N beams and M rectangular plates 
joined at R nodes and along K lines, on the assumption that the system contains U closed cavities of arbi t rary 
shape. 

The thermophysical propert ies  of the materials  depend on the temperature ,  and the thermal  conductivity 
of the materials  of plates,  moreover ,  may be anisotropic. 

At the lateral  surfaces of the beam as well as at the boundaries of the plates there can occur various 
thermal  processes :  aerodynamic action, convection, natural convection, radiative heating, heating by a given 
thermal flux, intrinsic radiation, radiative heat t ransfer  through the internal cavities, also any physically 
possible combination of these processes .  

The system of equations describing the propagation of heat through such a structure consists of N equa- 
tions of heat conduction for the beams, M equations of heat conduction for the plates, and U systems of integral 
equations of radiative heat t ransfer  through the internal generally nonconvex cavities. 

The boundary conditions at the joining nodes and lines are stipulated in terms of equal temperatures  of 
contiguous elements and zero sum of thermal fluxes at each joining node and line. 

The problem is solved by the implicit scheme in the method of elementary heat balances. Inasmuch 
as the temperature dependence of the therm0physical propert ies  is taken into account as well as intrinsic 
radiation and radiative heat t ransfer  through the cavities, the system of difference equations is written for 
being solved by the iteration method. The accuracy of the solution is improved by approximating the bound- 
ary conditions at the ends of the beams in the second order  [1]. The locally uniform scheme is used for dif- 
ference approximation of the equations for  the plates. 

The system of integral equations of radiative heat t ransfer  is algebraized with the aid of Markov quad- 
ra tures ,  according to the method shown in [2]. 

As a result ,  on each time interval there appears a system of algebraic equations constituting a set of N 
tridiagenal subsystems for the temperatures  of beamelements  and 2M tridiagenal subsystems for the tem-  
peratures  of plate elements, interconnected by equations for the temperatures of the joining nodes, also not 
connected with them and with one another U subsystems of equations for the density of incident thermal flux. 

For  the solution of this system there has been constructed an iteration process with respect  to the tem- 
peratures  of the joining nodes which also takes care of nonlinearities. The subsystems of equations of radia-  
tive heat t ransfer  are  solved by the method in [2] and the tridiagonal subsystems are solved by the elimination 
method. 

A program in the FORTRAN language has been written on the basis of this algorithm and heating of a 
rectangular caisson is calculated consisting of a th ree-s t r inger  upper panel and a smooth lower panel. 

le 
2. 
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D Y N A M I C  T E M P E R A T U R E  F I E L D S  tN H O M O G E N E O U S  

H O L L O W  S P H E R I C A L  B O D I E S  

V.  V .  S e m e n y u k  a n d  M. P .  L e n y u k  UDC 536.21 

The solution of c l a s s i ca l  p r o b l e m s  in the theory  of l inear  the rmoe las t i c i ty  r equ i re s  that the s t ruc tu re  
of the t rue  t e m p e r a t u r e  field during highly nonsteady p r o c e s s e s  be known. The t e m p e r a t u r e  field in an i so -  
t rop ic  homogeneous  hollow spher i ca l  body D = {(r, 0, ~), R1 -< r -< R 2, 0 < 0 -< ~, 0 -< ~ -< 2~} during such p r o -  
c e s s e s  is desc r ibed  by the s c a l a r  quantity T which happens to be the solution to the genera l ized  (hyperbolic) 
heat -conduct ion equation [1] 

O2T 2 OT { O~T 2 OT 
L [TI-~ b2--O-~ - -~ b " - ~  --a2 [-'O~r~ -4- r Or 

(1) 
+ (1--IX=)--~IX'j =h ( / ,  r, Ix, r Ix=cosO 

for  the in i t ia l -boundary  conditions 

or I = h (r, Ix, q~), (2) Tit=0 = :3 (r, IX, ~p), - -~  t=0 

( 0 0 ) 
h j l -~ r  .-~hj2 ,--~t .Ji-hy~ T]r=R, J = (--1)/"l- l~j(l ,  IX, fp}, / =  I, 2 (3) 

and the uniqueness  conditions with r e s p e c t  to @, 0). 

The solution to p rob l em  (1)-(3) is cons t ruc ted  with the aid of pr inc ipa l  solutions (fundamental functions) 
of the p rob l em in the f o r m  

t 2zg +1 R~ 
T = ~ d ~  d ~  d~ 1 ~ E ( t - - ~ ;  r, p; IX, ~l; ~, ~)P~/x(% P, ~l, ct) dp 

0 0 --1 R, 
t 2~ ..~I 

0 0 --1 

2~ +!  R2 
X~( ' I : ,  ~, ~)]drl"~-S dc~ S d~S K ( ' ,  r, p; IX, ~]; % G,)[f3(P, vl, ") 

0 --I R~ 

b2 2~ +I  R~ 

] ~  q- --~9/2(P, ~1, a) p~dp+ ~[-  da d~l K(t, r, p; IX, ~; % cz}f2(p, n, a)p~dp. 
0 --1 R1 

(4) 

A signif icant  role  in the const ruct ion of fundamental  
by the finite L e g e n d r e - F o u r i e r  in tegra l  t r a n s f o r m a t i o n s ,  

+ i  2~  

Anm[f(% Ix)]=--iS ! : (% 

functions E,  K, and W• of p rob l em (1)-(3) is played 
fo rward  Amn and inverse  A ~ n ,  

IX) e '~P" 2 (IX) dr =-- :~m, (5) 

• 2 fnrne-imq~P2 (~') 
_~ I Re ~m 

where  pm(~) is the a s soc ia t ed  Legendre  function of the f i r s t  kind [ 2 ] ,  
n 

- t (% ~), (6) 

{ - ~  , m~-~-O 
em = ; }lP~ (IX)Ir 2 = 

1, m ~ t  

2 (n q- rn)l 
(2n + 1)(n--m)l 

is the norm squared. 
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Operator Anm together with the Laplace integral operator  L [3] facilitate reduction of the three-dimensional 
problem to a one-dimensional one. 

Paramete rs  hij(i , j = 1, 3) make it possible to extract  from expression (4) the solutions to problem (1)- 
(3) for  any combination of the f i rs t  three kinds of boundary conditions stipulated at any of the surfaces r = 
Rj (j = 1, 2), while the nonnegative arb i t rary  parameters  b0, bl make it possible to obtain purely undular 
(bl ~ 0) as well as ordinary (parabola) (b 1 = 1, b 0 0) temperature  fields. 

As an example the case where sphere D contains no heat sources (fl = 0) is considered, its initial tem- 
pera ture  is zero (f2 = f3 = 0), its boundary r = R1 is maintained at zero temperature ,  and its boundary r = R 2 
is heated according to the law ~2 = t0S+(t) (1-p)  -1)/2, with S+(t) denoting the asymmetric  unit function. 

lo 
2. 
3. 

L I T E R A T U R E  C I T E D  

A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967), p. 600. 
E. W. Hobson, Spherical and Ellipsoidal Harmonics,  Chelsea Publ. (1955). 
M. A. Lavrent 'ev and B. V. Shabat, Methods in the Theory of the Complex Variable [in Russian], 
Moscow (1973), p. 736. 

Dep.No.1369-79. (Article received December 4, 1978; abstract  received 
March 27, 1979.) 

T E M P E R A T U R E  F I E L D  OF A B U R I E D  P I P E L I N E  

B. A. K r a s o v i t s k i i  UDC 536.242 

The t ransport  of many products over pipelines is associated with intensive heat exchange between the 
pipeline and the surrounding ground. The hydrodynamic character is t ics  of flow during pumping of heated 
crude oil or liquefied and cooled natttral gas are  most intimately related to the temperature of the stream. 
Pipeline t ransport  of water, mixtures and suspensions on a water base, or other freezing fluids through cold 
grounds requires  careful forecasting of the temperature  field so that clogging of the pipeline can be prevented. 
The heat t ransfer  processes  are part icular ly intensive during the startup period, characterized by the largest  
temperature  drops and appreciable nonsteadiness. 

The magnitude of thermal flux passing to the ground determines the rate of temperature change in the 
product along the pipeline and depends on the temperature field of the ground around the pipeline. This tem- 
perature field is determined by two factors:  perturbat ion-generat ingeffect  of the pipeline, whose temperature 
is generally different f rom the natural temperature  of the ground, and periodic changes in the natural tempera-  
ture of the ground due to seasonal fluctuations of the air  temperature.  Here the problem of thermal interaction 
between a pipeline and the surrounding ground, taking these factors into account, is formulated mathematically. 
The fundamental system of equations is simplified so that simple algorithms of its solution can be constructed. 
An approximate solution for the temperature  field of the ground around a buried pipeline is found in the form 
combining the solutions to axisymmetric  problems of thermoelasticity.  The lat ter  solutions are obtained by 
the integral method. In this way the expression for the thermal flux in the ground can be written in a closed 
form. For  the purpose of estimating the accuracy of this solution, it is compared with the results of a numeri-  
cal solution. 

The numerical solution was obtained by conformal mapping of the given region into a unit square. The 
heat-conduction problem within the conformal region was solved by the locally uniform difference scheme. A 
comparison of the results indicates that the method proposed here gives an e r r o r  not exceeding ~0. 

Dep.No. 1372-79. (Article received November 20, 1978; abstract  received 
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EFFECT OF THE STEFAN FLUX ON THE HYDRODYNAMICS 

AND THE HEAT TRANSFER INVOLVING AN 

EVAPORATING SPHERICAL PARTICLE IN MOTION 

B. I. Abramzon, B. M. Abramzon, 
and G. A. Fishbein 

UDC 532.516 

A study is made of the role which the Stefan flux plays in evaporat ion of a single droplet  in a s t r eam 
blowing on its surface at a constant velocity or  at a velocity not known beforehand but determined f rom the 
solution to the equation of convective diffusion. 

The evaporat ion p rocess  is assumed to be quasis teady,  the vapor near  the surface to be saturated and 
its concentrat ion to be a function of the droplet  t empera tu re  only. The physical  proper t ies  of the v a p o r - g a s  
mixture near  the droplet  are  assumed to be constant and to have been evaluated at some mean tempera ture  
and mean vapor  concentrat ion in the s t ream.  Internal  movement  of the liquid within the droplet is assumed 
to have no effect  on the external  s t reamlining.  

On the basis of these assumpt ions ,  the problem reduces to the following sys tem of N a v i e r - S t o k e s  equa- 
t ions ,equat ions  of diffusion, and hea t - t r ans fe r  equations for  the v a p o r - g a s  mixture  

where 05 sin0 0 ( 1  0 )  
g ~ =  ~ +  r ~ 00 s in0  00" ' 

NReN~sc~ OZ oo_ OZ) 1 0 ( O Z )  1 O (sin 00Z~  
2 ~" o-7 -+  r oo - ,-~ o,- "~-~# + , - ~ s ~  o~- -~-1' (2) 

N Pr vr Or r r 2 Or \ Or ] r ~sinO 00 -~-  " (3) 

Here ~ is the flow function; Z = (C-C0)/(C l - C 0 ) ,  relat ive concentrat ion;  C, relat ive m a s s  concentration of 
vapor  in the gaseous mixture;  t = (T-T0)/(T1-T0),  relat ive t empera tu re ;  T,  absolute t empera tu re ;  NRe, R e y -  
nolds number;  N p r ,  Prandt l  number;  and NSc, Schmidt number.  Subscript  "0" re fe r s  to the droplet  surface;  
subscr ip t  ,1" re fe rs  to the oncoming s t ream.  

The relat ion between the flow function and the blowing s t r eam velocity at the surface  of a sphere  is 

0 

= -- .I Y~ (0) sin 0 dO. (4) 
0 

The quantity VR can be defined according to the express ion  

(T 

V R -- sh 0 , 
NReNs c 

where p a r a m e t e r  a = (C0-C1)/(1-C0) determines  the intensity and the direct ion of the Stefan flux; sh0 is the 
local m a s s - t r a n s f e r  coefficient. 

The problem is solved by the f ini te-dif ferences  method for  values of the Reynolds number  NRe -< 100 
with ei ther  uniform or nonuniform injection of mass  at the droplet  surface.  The coefficients of fr ict ion and 
frontal d rag  are  calculated as functions of NRe and VR. Determined a re  the charac te r i s t i c  features  of the 
zone with r e v e r s e - v o r t i c a l  flow during injection and suction respec t ive ly .  Obtained are  also the values of 
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local  and mean heat  and mass  t r an s f e r  coeff ic ients ,  these values being compared  with exper imenta l  data c o r -  
responding to a Stefan flux p a r a m e t e r  within the - 0 . 5  -< a -< 0.5 range. 

Dep.No. 713-79. (Article rece ived  Apri l  24, 1977; abs t rac t  rece ived  
December  25, 1979.) 

E Q U A L I Z A T I O N  O F  

O F  A H O N E Y C O M B  

A S T R E A M  BY M E A N S  

A .  S.  M a z o  UDC 532.555/56 

Under considerat ion is the equalizing effect  of a honeycomb with a uniform (over the c ro s s  section) drag 
on nonseparat ion flow of an incompress ib le  fluid with an a r b i t r a r y  initial veloci ty  prof i le  in a channel of uni-  
fo rm c ross  section.  The p rob lem is solved by the methods  of hydraul ics ,  on the basis of the following flow 
pat tern.  Along the inlet sect ion 1 at  some dis tance before  the honeycomb and at sect ion 2 immediately behind 
the honeycomb there  is a constant s ta t ic  p r e s s u r e  and a ze ro  t r an sv e r se  velocity.  The flow rate  and thus also 
the mean velocity a longthe honeycomb tubes remain  constant so that the flow redis t r ibut ion must  occur  before  
the honeycomb. The total  p r e s s u r e  in the je t  f i laments  is ,  meanwhile ,  assumed to remain  constant. Con- 
s ider ing the case  of only a slight nonuniformity ,  the author  solves the problem by the method of per tu rba t ions ,  
accura te ly  down to t e r m s  of s e c o n d - o r d e r  smal lness .  The s t r e am  is subdivided into n e lementa ry  je t  f i la -  
ments  and for  each of the l a t t e r  is  wr i t t en  the continuity equation as well  as Bernoull i  equation, with losses  
in each je t  f i lament  flowing through the honeycomb assumed to be propor t ional  to the veloci ty in the honey-  
comb tubes squared (the veloci ty  being equal to the veloci ty  u 2 at the outlet). With a given velocity prof i le  at 
the inlet and with the geomet r ica l  condition of constant channel a r ea ,  this yields a closed sys tem of a lgebraic  
equations.  

An analysis  of the equations in this approximat ion revea ls  that the deviation of veloci ty f rom the mean 
one ]u i - u01 d e c r e a s e s  in the same propor t ion  in each je t  f i lament  upon passage through the honeycomb. The 
magnitude of the nonuniformity fac to r  ~2 behind the honeycomb does not depend on the shape of the initial  
veloci ty prof i le ,  but is re la ted  to the initial  nonuniformity fac tor  ~1 and the d rag  coefficient  ~ in the honey-  
comb according to the express ion  

r 

fo r  the case of square- law drag  (~ = const). Complete equalization of a s t r eam is thus possible only when ~ --" 
~.  This  conclusion d i sagrees  fundamental ly with the well-known concept about meshes ,  where  complete 
equalizat ion occurs  when ~ = 2 and the veloci ty prof i le  becomes inver ted when g > 2. Physical ly  this is 
at t r ibutable to the  fac t  that during passage through a mesh  (unlike through a honeycomb) the incidence angle 
does not change and, t he r e fo r e ,  the d rag  he re  remains  propor t ional  to the square  of the a r i thmet ic  mean of 
the veloci t ies  before  and af te r  equalization. 

In the case of a l inear  drag  law, cor responding  to l aminar  flow, equalization of a s t r e am  proceeds  ac-  
cording to the relat ion 

*z 
i + 0.5~. 

(t0 denoting the d rag  coefficient  in a uniform s t r eam  with the same flow rate) so that producing the same 
equalizat ion ef fec ts  r equ i res  a " laminar"  honeycomb with double the drag of a wturbttlent" one. 

An a r r a y  of honeycombs  one behind another  makes  equalization feasible  with lower  drag  losses .  

These  theore t ica l  resu l t s  have been compared with exper imenta l  data fo r  the case of square- law drag. 
A close ag reemen t  was found between the calculated and the measu red  dependence of the nonuniformtty fac tor  
on the honeycomb drag.  

Dep.No.  388-79~ (Article submitted August 22, 1978; abs t rac t  rece ived  
December  4, 1978.) 
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CALCULATION OF SURFACE FRICTION ALONG INITIAL 

PIPE SEGMENTS IN A TURBULENT BOUNDARY 

LAYER WITH WHIRLING OF THE STREAM AT 

THE INLET 

V ,  M. S o b i n  UDC 532.517.4 

An app rox ima te  method of calcula t ing the sur face  f r ic t ion  in a turbulent  boundary l a y e r  of an i n c o m p r e s -  
s ible  fluid with whir l ing of the s t r e a m  at the inlet is shown here ,  

The p rob l em is  solved with the aid of the in tegra l  method [1 l, which happens to be conserva t ive  with 
r e s p e c t  to the exact  veloci ty  prof i le  when the boundary region is c o r r e c t l y  s imulated.  The equations of 
mot ion within the boundary l a y e r ,  wr i t t en  in a cyl indr ical  s y s t e m  of coordinates  with appropr ia t e  boundary 
condit ions,  a r e  reduced to a s y s t e m  of two nonl inear  o rd inary  di f ferent ia l  equations of the f i r s t  o rde r  with 
r e s p e c t  to p a r a m e t e r s  ~ and s of su r face  fr ict ion.  Fo r  the axial  component  of ve loci ty  in the boundary l aye r  
is used the un ive r sa l  logar i thmic  prof i le  u + = 2.5 log y++ 5.5 and for  the tangential  component  of ve loci ty  is 
used  the prof i le  - w  + = u + s .  Here  s is r ega rded  as a function of x only. Af te r  e s t ima t ing  the magni tudes  of the 
t e r m s  in the resu l t ing  equat ions ,  the l a t t e r  can be s impl i f ied  to 

~+ (z~ - 5z + 12,5) dZ + ~ 5~+X (~ -- 2.5) = NR~.o. g)  
dx uo 

With the approx imat ions  

6 + (L ~ -- 5E -{- 12,5) = 1,9 exp (0.545)~), 
56+~, ()~ -- 2.5) = I1.1 exp (0.545) 0 (2) 

Eq. (1) admi t s  an analyt ical  solution. 

I t  is demons t r a t ed  that in many p rac t i ca l  cases  the veloci ty  ~0 = const.  Tak ing  this into account ,  the 
equation fo r  s becomes  

ds F NRe ~ 1 dZ ] 
~x ' 8+~z~--g;+ 12.5) - ~- 7;-] s = 0 ~z~ L 

and can, with the use of the first approximation (2) be easily integrated. 

Final ly ,  fo r  cf and s a r e  obtained the expl ic i t  e x p r e s s i o n s  

0.594 
cl = ~ _ . ~  , 

ln~ ( xo ) (4) 

c] 
s = ~ ,  ( 5 )  So cf  ~ 

with the constants  c o r r e c t e d  on the bas is  of expe r imen ta l  data.  

It is noteworthy that prof i le  (4) d e s c r i b e s  closely a lso  the dis t r ibut ion of the total  coeff icient  of su r face  
f r ic t ion  and prof i le  (5) v e r y  accu ra t e ly  p red ic t s  se l f -ad jo in tness  of whir l ing  angles in the s t r e a m  with r e s p e c t  
to the Reynolds  number .  

x = x / d  

u0 
s 

N O T A T I O N  

is the d imens ion les s  longitudinal coordinate ;  
is  the value of veloci ty  u at the edge of the boundary l aye r ;  
is the tangent  of the whir l ing  angle re la t ive  to the pipe axis within the immed ia t e  vicini ty of the 
wall ;  
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rl0 is the axial component of shear ing s t ress  at the wall;  
x0, So, and k 0 are  the values of x, s ,  and ~ at the inlet section; 
u + = u/u,; y+ = 

y U , / V ;  U, = ~ ;  Cf = 
2 idp- , x -- ud , = 

(21cf)l/~; ~o = uo/Uav; 
6+ = exp[ (X-  5.5)/2.51; 
z o = e x p  ( 0 . 5 4 5 X o ) ;  

N R e  = u a v d / v .  

1. 

L I T E R A T U R E  C I T E D  

F. M. White, Trans .  Am. Soc. Mech. Eng. ,  Ser. D, 9~1 No. 3 (1969). 

Dep. No. 709-79. (Article submitted Sep tember  12, 1978; abs t rac t  received 
December  27, 1978.) 

V E L O C I T Y  F I E L D  I N S I D E  A C Y L I N D R I C A L  V E S S E L  

W I T H  A R O T A R Y  S T I R R E R  A T  T H E  B O T T O M  

Y u .  V.  M a r t y n o v  

The flow of a liquid inside a cyl indrical  vesse l  with a ro ta ry  s t i r r e r  near the bottom is analyzed in the 
case  of a small  ra t io  of cyl inder  radius  to liquid level in the vesse l  and a s t i r r e r  with many blades,  
assuming  that the funnel fo rming  as a resul t  of intensive s t i r r ing  reaches  the bottom. The s t i r r e r  blades 
are  extended toward the bottom so that,  owing to the small  Clearance between s t i r r e r  and bottom, there will 
occur  only insignificant changes in the s t ream.  The funnel is approximated with a cone. According to data 
in [1], the s t r eam of liquid flows f rom underneath the s t i r r e r  radially outward and at the wall turns ver t ical ly  
upward,  whereupon it is sucked in by the s t i r r e r .  Considering that the concave surface of the vesse l  has a 
stabil izing effect on the s t r eam [2] and that no turbulence of the s t r eam occurs  at the free surface,  one can 
assume the flow in the mixer  vesse l  to be nonturbulent (except within a small  region around the s t i r re r ) .  
F i r s t  the flow in the entire region is calculated,  whereupon the region with high turbulence is removed.  The 
equation for  the flow function descr ibing an ax i symmet r ic  s t r eam of a nonviscous incompressible  fluid is 
given e lsewhere  [3], in a sys tem of spherical  coordinates with the origin at the ver tex of the funnel cone, and 
ze ro  boundary values are  stipulated at the cone axis as well as a t t h e  cylinder surface.  F u r t h e r m o r e ,  follow- 
ing the p rocedure  in [3], it is  assumed that ~($) = (k$2+ 2c$+ b~l/2, F($) = a 0 + a i $  + a 2 $ 2 / 2 ,  a n d  k ,  c ,  ao, a t ,  a2, 
b = const.  After  a change of var iables  z = ~2sin2d, x = cos2$-cos~ tcos~ ,  expansion of the coefficients of the 
der ivat ives  into Tay lo r  se r i es ,  with small  t e r m s  d i s regarded  inasmuch as cos~ t ~ 1, reduces  the problem to 

02 1 !0~2 4x 2 04 4z +[Sx ~ - 4 ( S e - 2 )  x] ~ - L x  z(16e+ - - + - -  - -  
Ozox + 4) " 7 0 x  z Z Ox 

+ k 4 + C + za~ap + zal = O, 

4(z, o)=4(1, x)=4(0, x)=O, 

v~ ~- r (~)/(~ sin 8), v~ = (~ sins ~)-i c34/o8 ' 

vo = - -  (~ sin v)-x O~/O~. 

r 

Its solution is sought in the form of a Taylor  ser ies  4 = XxnVn (z)/n!, with f0(z) = 0, since the boundary condi- 
n - ~ -  l 

tions make $(0, x) = 0. After  the real  par t  has been extracted,  the solution for  the f i r s t  t e rm of that ser ies  
( a l l  other t e rms  being relat ively small) i s  writ ten as $(~, ~) = cos ~ (cos ,5 - c o s  $1)CiNRe{exp(i~C~a2~2sin2~/2)r - 
(5/3)e + k/(4i a~2), 2 - 5 e ; - i  av~2~2sin23)}. Here r b, z) is the Kummer  function. The constants k, a2, cl, b 
are  determined f rom the sys tem of t ranscendental  equations ~(1-(5/3)e + k/(4ida2), 2 - 5 e ;  - i  a~'~2) = 0; ~$ (33, ~2)/ 
aS = 0 (the f i r s t  one being introduced so as to satisfy the second boundary  condition, the second one valid 
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Fig. i. Equidistant lines of 
secondary  flow, plotted in 0.01 
steps beginning f rom 0.01 (flow 
line neares t  to the free surface).  

inasmuch as the jet  s t ream flowing f rom underneath the s t i r r e r  is  axisymmetr ic)  and the sys tem of a lgebraic  
equations (k~2(~4, ~) + b) 1/2 = t ;  v~ (~ ,  ~7)/v~ (~ ,  ~7) = ~ (the f i r s t  one equating the azimuthal veloci t ies  of 
blades and liquid near  the s t i r r e r ,  the second one quantitatively relat ing the azimuthal motion and the axial 
motion). The value of a is e i ther  determined experimental ly  or  taken f rom published sources ;  it depends on 
s t i r r e r  and vesse l  design pa rame te r s .  For  choosing the necessa ry  root of the sys tem of t ranscendental  equa- 
tions there is derived an es t imat ing equation. It is obtained by equating the  ar i thmet ic  mean veloci ty,  ca l -  
culated on the basis of four velocit ies (at the tip of a s t i r r e r  blade, at the center  of a la tera l  sur face ,  at the 

I free surface near  the s t i r r e r ,  and at the upper level of the liquid) to v+ (k~ 2 + b)l/2/(~ sin ~)ds/S = 1.69 

(kQ2(STr2) -1 + b) ~/2 = v+ = ~2(1/~ 5 + 2 + 1/~9)/4. S 

On the basis of the express ions  derived here ,  a calculation is made of the velocity field in a mixer  
vesse l  with the dimensions ~ = 21~ 2~ 8 = 2.4; ~3 = 0-3; ~s = 0.8, as shown in Fig.  1. A numer ica l  solution of 
tbe sys t em of t ranscendental  and a lgebraic  equations yielded the values a 2 = -4 .365 ,  k = 0.609, cl = 0.302, 
b = 0.998, with 1.06 having been the est imated value of b. 

C1 

v~, v~, v~ 

~5 
~8 
v§ 
~9 

Q 

no, al ,  a2, k, c, b, c~ 
~I = 1 
v*~ = 1 

N O T A T I O N  

iS the flow function; 
is the constant; 
is the axial angle; 
is the radius;  
is the circulat ion;  
is the Bernoulli  constant;  
a re ,  respec t ive ly ,  the radial ,  azimuthal ,  and axial components  of veloci ty;  
is the blade width; 
is the blade length; 
is the half-height  of the liquid level;  
is the ar i thmet ic  mean azimuthal  velocity;  
is the project ion of the point where funnel surface and s t i r r e r  surface in tersect  on 
the vesse l  axis;  
is the rate of secondary  flow of the liquid; 
are  the constants;  
is the vesse l  radius;  
is the azimuthal  angular  velocity of the tip of a s t i r r e r  blade; 

~4 = ~5 + (1--~5)/2;  
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~6 = (~s + ~/4)1/2; ~2 = Tr/2; ~4 = a r c t a n  [~3/(2~)1~ 
~5 = a rc tan~s ;  

S i s  the c ros s=sec t iona l  a r e a  of the liquid in the m i x e r  
v e s s e l  in the plane of a radius  and an axial  angle. 

le  

2. 

3. 

L I T E R A T U R E  C I T E D  

F. Strenk,  Mixing and Devices  with S t i r r e r s  [Russian t rans la t ion] ,  Khimiya,  Leningrad (1975). 
B. P. Us t imenko ,  P r o c e s s e s  of Turbu len t  T r a n s p o r t  in Rotat ional  Flow [in Russ ian] ,  Nauka,  A lma-Ata  
(1977). 
O. F, V a s i l ' e v ,  Bas i c  Mechanics  of Hel ical  and Ci rcu la to ry  Flow [in Russ ian] ,  Gos6nergoizdat ,  Lenin-  
grad (1958). 

Dep.No.  387-79. (Article r ece ived  July 29, 1977; a b s t r a c t  r ece ived  
October  2, 1978.) 

H E A T I N G  O F  A M A T E R I A L  BY A S U R F A C E  S O U R C E  

A N D  AN I N T E R N A L  S O U R C E  O F  H E A T  

V .  M.  K u l y a p i n  a n d  A .  I .  P e c h e n k i n  UDC 536.248.2 

Under considera t ion  is the one-d imens iona l  nonl inear  p rob l em of fusion and evapora t ion  of a m a t e r i a l  by 
a su r face  sou rce  and an in ternal  source  of  h igh-dens i ty  t h e r m a l  flux. The t e m p e r a t u r e  prof i le  in the liquid 
phase  sa t i s f i e s  the equat ion of heat  balance and,  accord ing  to the analys is  in [1], is 

5z(x, t ) = T  o+ Tm--T O + ( q v  1 dTo~ 
x -  x------~ - ~  ~a, ~7 / [(x - Xo) ( x -  xo) - ( x -  Xo)~]. (1) 

The t rend of p r o c e s s e s  occu r r ing  he re  will  v a r y  depending on the re la t ion  between sur face  source  and 
in terna l  source .  The width X - X 0 of the mol ten  zone is 

8 
X - -  X o ---- - -  - -  U ( t * ) .  ( 2 )  

q 

F r o m  the subsequent ly  given equations will  follow that  U (t*) < 0. 

Evolution of heat  within the mol ten  vo lume,  

with lal < 0.25 

with la l  > 0.25 

[ 21~ / U +l--I/i-~X-tctl 1-- V ~  t * = - - I  ln(lctlU 2 + U + I )  1 [~tn - -  ] ; 
21~ 2]ct]V~-u 2 /o~IU_}_I~- -~ .  ~ ' I n  I + ~  ~ 

t* -- In (l,t] U~ + U + 1) arctg arctg �9 
2 I~l Is[ | / ~  1/4 I~I--I I r 

(3) 

(4) 

where  

Absorp t ion  of hea t  within the mol ten  vo lume ,  with a > 0 

_) 1 r 1 /ln V - l ~  + 2 a U -  1 In V-t + 4r 1 - - ~  In (1 + U--  a2]~), 
2~ l/T--+-+ 4-ct \ Vl +4ct-2<zU + 1 V'I + 4 a +  1 

eq~ ~ Lo 1] ; 
r162 = ~ 2~-q~ L'L -4- c (To -- T) 

e=;~' l (To--Tm) I + L + c ( T o _ _ T  )' ; -- 
q~t 
Lope 

(5) 
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It is evident ,  accord ing  to exp res s ions  (3)-(5), that  the mol ten zone s tabi l izes  dur ing absorpt ion  of heat  
within its volume and dur ing evolution of heat  withl~l  < 0.25. As the in ternal  source  i n c r e a s e s ,  the fusion p r o -  
cess  becomes  nonsteady.  

q 

qv 
Xo(t) 
x(t) 
X - X o 
X 

TO, Tin,  T 

t 
kl 

al 
c 

Lo 
L 
P 

N O T A T I O N  

is the su r face  density of t h e r m a l  flux, W/cm2; 
is the volume densi ty  of t he rm a l  flux, W/cm3; 
is the breakdown boundary,  em;  
is the fusion boundary,  cm;  
is the mol ten  zone,  cm;  
is the running s p a c e  coord ina te ,  cm;  
a r e ,  r e s p e c t i v e l y ,  the t e m p e r a t u r e  of the breakdown sur face ,  mel t ing  point,  and init ial  t e m p e r a -  
ture ,  *K; 
i s  the t ime ,  s e c ;  

is the 
Is the 
Is the 
is the 
is the 
Is the 
Is the 

t h e r m a l  conductivity of the liquid m a t e r i a l ,  W/cm-  deg C; 
t h e r m a l  diffusivity of the liquid m a t e r i a l ,  cm2/sec;  
mean  speci f ic  heat ,  J /g"  deg C; 
latent  heat  of evapora t ion ;  
la tent  heat  of fusion;  
dens i ty ,  g/cm3; 
t e m p e r a t u r e  prof i le  in the liquid phase.  

1. 

L I T E R A T U R E  C I T E D  

O. N. F a v o r s k i i ,  V. V. F ishgoi t ,  and E. I. Yantovski i ,  Bas ic  Theory  of E l e c t r i c - J e t  Spacecraf t  
Engine Appara tus  [in Russ ian] ,  Vysshaya  Shkola, Moscow (1978). 

Dep.No.  710-79. (Article rece ived  May 15, 1978; a b s t r a c t  r ece ived  
January  9, 1979.) 

S O L U T I O N  O F  T H E  T H R E E - D I M E N S I O N A L  T R A N S I E N T  

P R O B L E M  O F  H E A T  C O N D U C T I O N  IN B O D I E S  O F  

I N T R I C A T E  S H A P E S  

V.  M. K a p i n o s  a n d  Y u .  L .  K h r e s t o v o i  UDC 621.165 

Dete rmina t ion  of the t e m p e r a t u r e  f ields in bodies of in t r ica te  shapes  reduces  to a solution of the t h r e e -  
d imens ional  t r ans ien t  p rob lem of heat  conduction for  i r r e g u l a r  regions .  This  is often dolm by grid methods.  
When p r o b l e m s  for  i r r e g u l a r  regions  a r e  solved with the aid of equations which have been der ived  fo r  r egu la r  
( rec tangular ,  cy l indr ica l ,  spher ica l )  r eg ions ,  then diff icul t ies  a r i s e  in r e f e r r i n g  the boundary conditions to 
grid points on the boundary. 

It i s ,  t h e r e f o r e ,  p roposed  to t r a n s f o r m  a n i r r e g u l a r r e g i o n t o  a r egu la r  one by a l inear  change of coo rd i -  
na tes  which, on the onehand,  will e l imina te  a t t r i t ion  of the boundary  conditions and on the o the r  hand will e s t a b -  
l ish conditions making it easy  to cons t ruc t  a lgo r i thms  of t e m p e r a t u r e  field calculat ions for  bodies of in t r ica te  
shapes .  

The heat-conduct ion equations and the appropr i a t e  boundary condit ions,  in  a s y s t e m  of cyl indr ical  c o o r -  
d ina tes ,  for  a region botmded by the in te r sec t ion  of su r f aces  r = R(z ,  ~) and r = r0(z, r which have continuous 
f i r s t  de r iva t ives  with planes  z = 0, z = l ,  ~ = 0, ~ = II at R > r 0 have ,  accordingly ,  been t r a n s f o r m e d  by the 
change 

r - -  r - - - - - ~ ~  , 

x l ~ a + b R _ r o  x~=z, x3=% 
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where a and b are  determined f rom the conditions r = r0, xt = a; r = R,  xt  = a t ,  b = a - a  t .  

There fo re ,  a arid a t a r e ,  respect ive ly ,  the inside radius and the outside radius of the reference  region 
constituting a par t  of a s t ra ight  hollow cylinder of length l contained between two radial  planes at angle II to 
each  other.  

The new sys tem of coordinates  is not orthogonal with a nonzero Jacobian.  

The heat-conduct ion equation in these coordinates is 

1 "at 02__.~t , at ~ Oat - O~t B a:t 

OX2 OXlOX2 OX3 OXiOXlt 

where  

A OA l 1 OA, 
B1 =Aa+ A~ + A~/r~; B~=-7- + -  ~ -  + 7  ~- , ;  8~ = 1, B4 =2A1; 

Bs = 1/r 2, B4 = 2A~/ra; A = OxlOr , A1 ~ "~Z ' 0xl A~ - Oxbow. 

The boundary conditions, after transformations, become 

. ~b A~ cos (n, q))] Ot _{_ cos (n, Ot 1 Ot 
- -  --if- (t - -  ti) = [A cos (n, r) + A 1 cos (n, z) + 7 -  Ox'-~ z) ~ + cos (n, ~p) 7 -  Ox----~ ' 

with the hea t - t r ans f e r  coefficient C~b and the tempera ture  of the medium tf both being functions of time as well 
as of the coordinates ,  with k denoting the thermal  conductivity, a denoting the thermal  diffusivity, and n denot- 
ing the outward normal .  

The resul t ing sys tem is solved numerical ly  according to the efficient additive scheme with a floating 
weight. 

The region of the t empera tu re  field determinat ion is descr ibed as follows. The body is subdivided into 
segments  by radial  planes and planes perpendicular  to the z axis. The outside sur face  and the inside surface 
a re  descr ibed  by a conical su r f ace  or  a plane surface.  The grid is constructed so that the calculation points 
lie only on the region boundaries and never  on the segment  boundaries.  

Dep.No. 712-79. (Article received June 28, 1977; abs t rac t  received 
October  26, 1978.) 
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R O L E  OF C A V I T A T I O N  IN T H E  U L T R A S O N I C  

C A P I L L A R Y  E F F E C T  

V.  G.  B a r a n t s e v  a n d  V .  N .  M o t o r i n  UDC 534.14 

A s e r i e s  of expe r imen t s  was p e r f o r m e d  fo r  the purpose  of studying the effect  of u l t rasound on the capi l -  
l a ry  r i s e  of liquids. P a r t i c u l a r  attention was  paid to physica l  f a c to r s  caus ing the p r e s s u r e  head to inc rease  
under  the influence of ul t rasound.  

An exper imen ta l  appara tus  was se t  up for  this which included a s y s t e m  of m e a s u r e m e n t s  with r ecord ing  
of the instantaneous veloci ty  of the liquid along the capi l la ry  on a mot ion p ic ture  f i lm.  The expe r imen t s  
we re  p e r f o r m e d  under  the following conditions: r ad ia to r  power  N = 25 W, vibra t ion f requency f = 41 kHz, 
d i a m e t e r s  of the cap i l l a r ies  d = 0.21, 0.61, 1.16, 2.0, 3.0 m m .  As the act ive medium were  used wa t e r ,  ethyl 
alcohol,  and t r a n s f o r m e r  oil. The ampli tude of sound p r e s s u r e  in the liquid was m e a s u r e d  with a hydrophone. 
Tes t  r e su l t s  a r e  shown for  P0 = 1.58 a tm.  

The resu l t s  of these  expe r imen t s  r evea led  the t rend of changes in the veloci ty  of cap i l l a ry  r i s e  with t ime ,  
depending on the tube d i a m e t e r  and on the kind of l iquid.  The r i s e  ve loc i ty  i s  dependent on the dis tance 
f r o m  the r ad i a to r  to the base  of the capi l lary .  The expe r imen ta l  data a r e  p resen ted  in the f o r m  of graphs  
h = f(r) ,  r denoting the in te rva l  of t ime  within which the liquid level  had r i s en  by the height h. At the same  
t ime  was a lso  m e a s u r e d  the m a x i m u m  r i se  of the liquid level  depending on the tube d i ame te r .  In the capi l la ry  
with a d i a m e t e r  of 3.0 m m  it was  found to be 105.4 t imes  higher  than the equi l ibr ium r i s e  of liquid without 
ul t rasound.  

Cavitat ion in the liquid was obse rved  visual ly  and r eco rded  on photographic  f i lm through a m i c r o s c o p e  
with a c a m e r a  a t tachment .  In all  the expe r imen t s  the veloci ty  of cap i l la ry  r i s e  was found to become highest  
with the base  of the cap i l l a ry  placed in a cavitat ion cloud or  d i rec t ly  above it. The readings  a lso  became 
stable  under  this condition. 

The phenomenon of cavi tat ion was obse rved  only at  u l t rasound intensi t ies  above the threshold  level .  As 
the ampli tude of acous t ic  waves  dropped below that  th reshold ,  cavi tat ion in the liquid ceased  and the liquid 
column dropped to the equi l ibr ium height of cap i l l a ry  r i s e  without ul t rasound.  

The resu l t s  of these  expe r imen t s  conf i rm the conclusion that  acous t ic  cavi ta t ion in the liquid is the cause 
of the u l t r a son ic  cap i l l a ry  effect .  

The authors  p ropose  a physica l  model  which,  in thei r  view,  explains the p r o c e s s  of cap i l l a ry  r i s e  of a 
liquid under  the influence of u l t rasound,  namely  some t runcat ion  of the normal  ampli tude of u l t r a son ic  waves  
dur ing the r a r e f ac t ion  phase  as a r e su l t  of u l t r a son ic  cavi ta t ion in the liquid. It is suggested that  acoust ic  
cavi tat ion in a liquid r e su l t s  in some t runcat ion of the ampli tude of u l t r a son ic  waves  dur ing the r a r e f ac t ion  
phase.  The t runcat ion level  is de t e rmined  by an e m p i r i c a l  coeff icient  (~) which depends on the conditions of 
the expe r imen t :  d i a m e t e r  of the capi l la ry  tube, kind of l iquid, e tc .  
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Under considerat ion is an infinitely long solid cyl inder  with the radius R asymmet r i ca l ly  heated in the 
c i rcumferen t ia l  direct ion.  

Rs s ta te  of thermal  s t r e s s  is defined by the s t r e s s  function @ =@(r, 9, v), which is the genera l  solution 
to the noahomogeneous b iharmonic  equation 

a(aO) = l + tLa~" 
~ + .  - (1) 

F o r  de te rmining  the components of the s t r e s s  t ensor  aij(i, j =r ,  ~0, z), the t e m p e r a t u r e  field t =t(r ,  ~0, ~r) 
is r ep re sen ted  as  the sum of two components:  

t(r, ~, ~)=t,(r, .O+t2(r, ~, ~). (2) 

Here  t l ( r ,  T) is the s y m m e t r i c  component of the t empera tu re  field and t2(r, 9, v) is  the a sy m m et r i c  compo-  
nent. 

The s t r e s s e s  calculated according to Eq. (1) will  then appear  as the sum of two solutions to the t he rmo-  
e las t ic i ty  p rob lem,  one of them corresponding to t l ( r ,  r) and found by conventional methods.  The other  solu-  
t ion,  cor responding  to t2(r, ~0, r ) ,  is de termined  f rom the the rmoelas t i c  displacement  potential  �9 = ~(r, ~0, 7), 
which sat isf ies  the equation 

AO=~-+__---~ ~tdr, % t), (3) 

and f rom the general  solution to Eq. (1) without the r ight-hand side. The components of the s t r e s s  tensor  
a re  expres sed  in d imensionless  fo rm.  F r o m  the general  express ions  given here  can be obtained those for  
special  cases  which cor respond to s y m m e t r i c  heating of an infinitely long solid cyl inder  and which are  identi-  
cal to the well-known express ions  for  these cases .  

An example is cons idered  to i l lus t ra te  the p rac t i ca l  application of these solutions. It is based on ex-  
per imenta l  data on heat ing of solid cyl indr ical  billets by impinging je ts  in a h igh-speed  convection furnace .  

N O T A T I O N  

r is the radial  coordinate ,  m; 
~0 is the angular  coordinate;  
T is the t ime ,  sec;  

is the Poisson ' s  ra t io;  
is the coefficient  of thermal  expansion,  1/deg C; 

A = (82/8r 2) + ( l / r )  -. is the Laplace opera tor .  

(alar) + (1]r~) �9 ( ~ / ~ )  
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