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MOTION OF AEROSOL PARTICLES HEATED BY
INTERNAL SOURCES IN EXTERNAL FIELDS
OF TEMPERATURE AND CONCENTRATION
GRADIENTS

Yu. I. Yalamov, M. F. Barinova, ' UDC 533.72
A, V, Myagkov, and E. R. Shchukin :

A theory is constructed for the motion of spherical particles in gaseous media under the action of forces
resulting from a nonuniform distribution of temperature and concentration, such a nonuniformity being caused
by arbitrarily oriented external femperature and concentration gradients as well as by internal heat sources.
Expressions are derived for the total force acting from the gas on an aerosol particle and for the rate at which
the motion of such a particle stabilizes, Methods are shown by which the velocity of internally heated parti-
cles and the forces acting on them, in any external field of temperature and concentration gradients, can be
calculated. In the case of a spherical particle moving due to internal heating only, an analysis of the process
includes also the causes of photophoresis. '

Dep.No. 1376-79. (Article received September 25, 1978; abstract received
- March 5, 1979,)

EXPERIMENTAL STUDY CONCERNING THE EFFECT
OF COMPLIANT SURFACES ON THE INTEGRAL
CHARACTERISTICS OF A BOUNDARY LAYER

V, I. Korobov UDC 532,526-597.31

Studies have alréady been made concerning the interaction of compliant boundaries with an oncoming
stream, these boundaries being in most cases between air and membrane surfaces. The view prevails, based
on hydrobionic studies, that elastic surfaces such as integument play an active functional role in the hydro-
dynamics of aquatic animals, '

Here results are presented of an experimental study concerning the hydrodynamic friction at compliant
monolithic surfaces, taking into account the morphofunctional structure of external integuments in aquatic
animals. These experiments were performed in a water flume with an insert on a tensometric mounting in
the lower wall of the test segment.

The main results of this study can be formalized as follows.

Compliant surfaces can have a significant effect on the integral characteristics of a boundary layer and
a compliant surface with constant mechanical characteristics has, moreover, an effect on a boundary layer
within a specific relatively narrow range of the Reynolds number with the situation and the width of the peak
within that range depending on several parameters of the surface. :

Dep.No, 1368-79. (Article submitted December 5, 1978; abstract réceived March
23, 1979.)
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EFFECT OF "WHITE NOISE'' ON THE PROCESS
OF INERTIAL SEPARATION

E. A. Eseev UDC 531,38

The stochastic differential equation

2
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is applicable [1] to transient turbulent motion of a whirled disperse system where trajectories of all particles
of the carrier medium have been assumed to be arcs of concentric circles and the movement of the suspen-
sions (Stokes fractions) relative to the dispersing medium has been assumed to be quasisteady. As is well
known [2], to Eq. (1) corresponds the equation
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Letting v, = const r{ and approximating some profile of tangential velocities of the carrier medium
with ¥ = 0.5, we can rewrite Eq. (1) in dimensionless form as
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where o and 8 are the dimensionless coefficients of diffusion and drift, respectively.
The solution to Eq. (2) for the boundary conditions

df (Ry) = df (Ry)
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Here R; and R, denote, respectively, the inside boundary and the outside boundary of the separation zone, and
parameter A characterizes the intensity of breakaway of particles of some fraction from boundary R,. In ex-
pression (5) the first term is always positive, the second term is always negative, and the third term is deter-
mined by parameter A,

An inspection as to whether the same solution (5) holds true also for some other empirical Vo profiles,
specifically for ¥ =1 and y = —1, made by numerical integration of the forward Fokker —Planck—Kolmogorov
equation for process T(f) with a probability density w(t, t) and conditions at Ry, R, analogous to boundary condi-
tions (4), has revealed a complete agreement of the results with solution (5). As the value of coefficient o in-
creases, the calculated fraction efficiencies at corresponding instants of time t within the process period in-
crease and the shape of the vy profile does not influence this trend in any way. '

NCTATION
r, ¢ are the polar coordinates;
t is the time;
\2 is the tangential component of the velocity field in the dispersing medium;
T is the relaxation time of a separating particle;
P,/ are the physical densities of the medium and of a particle, respectively;
g is the parameter characterizing a specific dispersion system;
£ ¢ are the "white noise" and its intensity;
f is the average time for a particle to reach the boundary;
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ry is the initial distribution of the polar radius;
fo = 21‘0/ _ :
R; +R,) is the f etc., dimensionless characteristics of corresponding quantities.

LITERATURE CITED

1, N. A. Fuks, Mechanics of Aerosols [in Russian], Izd. Akad. Nauk SSSR, Moscow (1955).

2. Yu. V. Prokhorov and Yu. A. Rozanov, A Mathematical Reference Library: Theory of Probability
(Fundamental Concepts., Extremum Theorems, Random Processes) [in Russian], Nauka, Moscow (1967).

3. E. Rammler and R. Beuerfeind, Staub (Dust), 134, No.5, (1959), German.

Dep. No.1375-79. (Article received August 9, 1978; abstract received
March 26, 1979.)

STUDY OF THE P—p~— T RELATION FOR 2,3-BUTYLENE
GLYCOL OVER WIDE RANGES OF TEMPERATURE
AND PRESSURE

T. A. Apaev, I. G. Imanova, : UDC 536,2
and A. M. Kerimov

The density of liquid 2,3-butylene glycol was measured for the first time over the temperature range
from 290 to 620°K and the pressure range from 1 to 800 bar by the method of hydrostatic weighing. Some of
the experimental P~p—T data are tabulated here.

The maximum relative error of density determination, including possible measurement and conversion
errors, was +0.1%,

Processing and evaluation of the p—p —T ‘data for 2,3-butylene glycol were done according to the A, M,
Kerimov—T. A. Apaev method, which these authors had proposed for liquid hydrocarbons, The sections
across isotherms at constant-density coordinates were found to be straight lines, for 2,3-butylene glycol too,
accurately within +0,12% of density values. For describing the P—T relation at p = const, accordingly, we
used the equation

p=A(P)+B(p)T, L

with A and B both fractions of 2, P denoting the pressure on the liquid (bar), and T denoting the tempera-
ture (°K).

On the basis of rigorous thermodynamic analysis, the coefficients in Eq, (1) can be shown to have the

physical significance of
- (2% ({22
A”"( v )r’ B‘“( aT ) @)

TABLE 1. Density of 2,3-Butylene Glycol, p+107° kg/m?

T,°K

P, bar [
291,37 350,27 408,15 469,92 513,99 568,15 623,15

1,0123 0,9962 0,9484 0,8985 — —
99,012 1,0014 0,9547 0,9059 0,8458 0,7944 0,7212 . | 0,6070
197,01 1,0062 0,9606 0,9132 0,8570 0,8100 0,7451 0,6618
295,01 1,0110 0,9667 0,9205 0,8674 0,8239 0,7648 0,6946
393,01 1,0155 0,9724 0,9277 0,8770 0,8364 0,7808 0,7191
491,01 1,0194 0,9780 0,9345 (0, 8859 0,8474 0,7946 0,7391
589,01 1,0232 0,9834 0,9412 0,8948 0,8580 0,8069 0,7557
687,01 1,0268 0,9881 0,9479 0,9037 0,8677 0,8183 0,7696
785,01 |- 1,0302 0,9924 0,9546 0,9126 0,8772 0,8294 0,7824
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Here ¢ is the energy of intermolecular interaction and V is the volume. Expression (2) can easily be reduced
to the form A = —dg/dV and, therefore, d¢ = —AdV, since V = uv, with 4 denoting the molecular mass and v =
1/p denoting the specific volume of the liquid at given values of the state parameters, so that

de = — pA (v) dv. (3)

Inasmuch as the curve of A = f(v) asymptotically approaches the v axis, integrating the expression (3)
from a fixed specific volume v, to » will yield the energy of intermolecular interaction

= ? A (v) do.
Ugy

Dep.No, 1370-79, (Article received October 2, 1978; abstract received
March 19, 1979.) :

DIELECTROMETRIC INSPECTION AND CONTROL OF
HIGH-FREQUENCY DRYING OF
HETEROGENEOUS MATERIALS

N. V., Sedykh and L. G. Sedykh UDC 66,047.354

With a view toward optimization of the drying process in microwave fields, an extremal problem mathe-
matically formalizing this process is considered here.

In order to solve this problem in linear programming, it is necessary to measure the dielectric param-
eters of the object being dried: its dielectric constant €, loss tangent tand, and relaxation time T,

An experimental determination of £, tand, and 7 during the drying process is not possible by classical
methods because of the lengthiness of this process. Therefore, plotting the dielectric spectra [1] by the pulse
method is proposed here for this purpose.

Into the system under consideration is transmitted a rectangular pulse signal whose Fourier spectrum
extends over a very wide frequency range.

A Fourier analysis of the incident pulse as well as of the pulses, respectively, reflected by and trans-
mitted through the object yields quantitative data about the frequency dependence of the dielectric properties
of the material,

Using the dielectric parameters and approximately regarding the object being dried as a two-component
mixture, one can calculate its moisture content according to the relations for dielectric mixtures [2]. As the
selection criterion we use the relaxation time T and the interval of time distribution.

Dielectrometric inspection makes it possible to regulate the drying process by varying either the power
output or the frequency of the microwave oscillator.

The proper mode of regulationcan be selected by a computer, upon checking the actual process conditions
against the prescribed ones, on the basis of a simulation of the process in the form of the solution to the sys-
tem of equations describing heat and mass transfer during microwave heating,

It is proposed that Pontryagin's principle of the maximum {3] be applied to the forming of control signals
which will optimally fast veer the system (object being dried) to the prescribed condition,

An analysis of the proposed algorithms is made here for. the case of drying a yeast suspension in micro-
wave fields at optimum frequencies, with current correction of the process to optimality. Application of this
method has made it possible to accelerate the drying process and render it more economical,
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RADIATIVE HEAT TRANSFER IN A COAXIAL SYSTEM
OF TWO CONTINUOUS CYLINDERS WITH A
PERFORATED ONE BETWEEN THEM

A. V, Rumyantsev, O, N, Bryukhanov, UDC 536.24
and V. R. Bazilevich

The net fluxes of radiation energy flowing between the elements of a system which consists of three in-
finitely long coaxial cylinders, the middle cylinder with holes in the surface, are determined in the diffusion
approximation from given temperatures and opticogeometric characteristics. The problem is solved by the
general zonal method, for which expressions are derived describing the mean angular coefficients of radia-
tion:

Pra=B, P=1—P, @u=(—{m)(1—p),
P =Cl12r Qo =B (1 —L12)s  Pas = Las (1 —B) Pass
P =001 Qus=(1—P)los» Pua=1—10p[1 —P2(1 —Ep)l

Here ¢jk = Di/Dk are the ratios of diameters of the cylindrical surfaces and B is the perforation index of sur-
face F,. Subscripts 1 and 3 refer to convex surfaces, subscripts 2 and 4 refer to concave surfaces.

A numerical evaluation of the calculated results reveals a nonlinear dependence of the net energy fluxes
radiated by surfaces F, and F, on the parameter 8. The energy flux from surface Fy increases monotonically
with increasing 8, which can be explained by a decrease in the shielding effect of the perforated cylinder. The
energy flux radiated by surface Fy decreases linearly with increasing B, owing to a decrease in the surface
area, The energy fluxes radiated by surfaces F, and F, depend nonlinearly on the variable 8,

The function describing the net flux from surface F, to surface F, has a maximum which shifts toward
lower values of B, as the emissivity € decreases. The anomalous radiation characteristic of this surface is
due to three differently influencing causes: 1) perforation (cavity) effect; 2) change in the magnitude of the
radiation flux impinging on the receiver surface as the perforation area changes; and 3) change in the area of
the emitter surface as g changes. These factors make this function nonlinear with a maximum.

The perforated middle cylinder can be regarded as shield with holes between the two continuous cylin-
ders. A comparison of energy fluxes impinging on surface F, with the presence of respectively a perforated
or continuous cylinder in the system at the same femperatures in each case, indicafes their ratio is larger
than unity for any values of € and 8. The difference between the magnitudes of energy fluxes increases with
lower ¢ values and this trend is attributable to the perforation effect, which significantly influences the pattern
of radiation from surface F,.

These theoretical data also yield the energy radiated in a system of coaxial cylinders with a continuous
one inside and a perforated one outside,

'Dep.No. 1374-79. (Article received QOctober 3, 1978; abstract received
March 26, 1979.)
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ANGULAR COEFFICIENTS FOR A PARTIALLY
SHIELDED CYLINDRICAL SURFACE

V. A, Arkhipov UDC 536.3

The angular radiation coefficients for the surfaces of a disk and of an infinitely long cylinder, sepa-
rated by a shield parallel to the disk and having a diaphragm coaxial with it, are calculated by the method of
numerical integration, assuming that the normal to the disk at its center intersects the cylinder axis at right
angles, Such a configuration is of interest, e.g., in the design of optoelectronic equipment for diagnosis of
plasma jets with a laser. The mean angular coefficient is calculated according to the general relation for ¢,
written in a form applicable to this particular geometry:

2, B L5} 2

‘S sz‘(L—Rcosi)dEj'rdrj (rsinfsintp-Leos§ —R) dp
2 g d

I
4R
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0

T (e

P1,2

For the variable integration limits z(r, ¢, &), éx(r, ¥), which define the field of vision, the analytical expres-
sions

2g =rcosy -+ i——1;!2—c35~é(-l/rg——(rsinlp—[—ig—el—fi—nE—ch—ors—sgﬂp*)r—rcosx];),

Lry~— (L —1)rsiny arct ro—rsiny
RVEL(r—rsing) 8§

Ep = arc sin

are obtained.

On the basis of the algorithm set up here, calculations are made and graphs are plotted for mean and
local (with the disk elongated into an elementary area) angular coefficients corresponding to various values
of the geometric parameters of the given radiation system.

NOTATION

A is the distance between disk and shield;

L is the distance from the disk to the cylinder axis;

r,¢ are the cylindrical coordinates of a point on the disk surface;

ry is the disk radius;

ry is the diaphragm radius;

R is the cylinder radius;

z,£ are the cylindrical coordinates of a point on the c¢ylinder surface.

Dep.No. 1377-79, (Article received October 23, 1978; abstract
received February 27, 1979.)
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HEAT TRANSFER BETWEEN A DOUBLE-LAYER PLATE
AND AN EMITTING AND SCATTERING MEDIUM
IN MOTION

F. N. Lisin and I. F. Guletskaya : UDC 536.3

A gray emitting, absorbing, and scattering medium moves through a slot channel with gray walls, The
bottom wall is a double-layer plate of a given thickness and with known thermal conductivities, The velocity
profile is parabolic. The thermal flux at the lower surface of the double-layer plate is given as a function of
the x coordinate, and the temperature of the top wall is given as constant T. In dimensionless form, the
problem is written in the form of equation

. 24 Ni -
. _u_(_q_)_ a6 aJg Pe )

hr—al— i e d‘
u 9x af Npo vy

for the energy of the moving medium, and equation

020; 0%);
oy o

=0, i =1, 2-denoting the respective layers, {2)

for the heat transfer within the layers of the plate, with the boundary conditions
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where 1 = y/b; .= x/b; 8 = T/Ty; ki = M/A5 Ky = M/Ag; § = Sy/b; 8, = Sy/b; @F = a7 ®)/a T

The divergence of radiation flux is found from the solution to the transfer equation, in the Py approxima-
tion of the method of spherical harmonics, and it includes the mean scattering cosine. On the basis of a
numerical solution, the dependence of the Nusselt number on the optical thickness is analyzed for radiative
flux and convective flux to the plate and to the top wall. The quantity of heat transferred by radiation to the
walls, as a function of 74(1 — 7), passes through a maximum within the 1.1-1.2 range (7 denoting the optical
thickness and y denoting the ratio of scattering coefficient to attenuation coefficient). On the basis of calcula-
tions is also analyzed the dependence of the heat-transfer rate on the ratio of thermal conductivities k, = A/Ag.
As k, increases, the temperature at the n = 0 surface rises and this affects the cooling of the medium in the
channel. The higher the value of k; is, the higher lie the curves of the radiation Nusselt number as a function
of the channel length.

Dep.No. 1380-79. (Article received August 22, 1978; abstract received
March 30, 1979.)
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EXAMINATION AND CALCULATION OF THE ENERGY
CHARACTERISTICS OF RADIATIVE HEAT TRANSFER
IN A RADIATION SYSTEM CONSISTING OF TWO
COAXIAL CYLINDERS OF DIFFERENT LENGTHS AND
SEPARATED BY AN ATTENUATING MEDIUM

Yu. A. Surinov and V. V. Rubtsov UDC 536.3

The second variant and the third variant of the generalized zonal method according to Surinov [1-3] are
applied to a numerical analysis and solution of the mixed problem of radiative heat transfer ina radiation system, in
the case where the latter is bounded by two coaxial cylinders of different finite lengths and filled with an ab-
sorbing as well as isotropically scatiering medium so that it can be regarded as a single isothermal volumetric
zone at a given temperature. The boundary surface F of this system is subdivided into six zones (two lateral
surfaces of the inner cylinder and the outer cylinder, respectively, also the two base surfaces of each). Given
are the temperatures of the inner cylinder at its lateral and both base surfaces, also at one of the base surfaces
of the outer cylinder, and the net radiative flux at the other base surface and the lateral surface of the outer
cylinder. Determined are the surface densities of the net radiation flux at zones of given temperatures and the
temperature fields of zones with given radiation fluxes, also the volume density of the net radiation flux and
the spherical radiation vector at internal points of the system.

For the purpose of determining these energy characteristics of radiation, a preliminary numerical
evaluation was made of the various opticogeometric resolving functions and, particularly, the generalized
resolvent angular radiation coefficients II(M;, F) as well as the generalized resolvent solid angles n® (M,
Fi) according to the expressions

6
I (M;, Fr) =9 (M, Fr)-+ ijnjh\p(Mi, Fj)+ %H(l) (v, Fu) A (Mz, V);
i=t
(MigFi; i, k=1,2 ..., 6)

, 6 .
TIW(M, Fp)=pt (M, Fh)+2 Ry (M, Fj) +% ANV, Fi) AQM, VY, (MgV).
i=1

The results of this numerical evaluation are presented in graphical form depicting the respective rela-
tions for the energy characteristics of radiation. Noteworthy are the dimensionless boundary characteristics
of radiation as functions of the coordinates, obtained for various values of the Bouguer number, The effect
of scattering by the medium on these radiation characteristics is also examined,
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APPROXIMATE ANALYSIS OF TEMPERA.TURE-I' FIELDS
IN COATINGS DURING ENAMELING OF CONDUCTORS

N. A, Tsvetkov and A, 8. Lyalikov UDC 536,33,01:621,315,33

The problem of radiative —convective heat transfer involving conductors is formulated so as to apply to
the technology of enameling from a melt in two extreme cases (an insulation coating respectlvely opaque and
transparent to thermal radiation).

A wire and an enamel coating are represented as two cylindrical bodies, whereupon the relatively thin
coating is assumed fo be flat. Owing to low values of the Biot number for wire (copper, aluminum, constantan,
manganin, and other metals), the latter could be regarded as a thermally thin body.

A pumerical analysis of the resulting system of differential equations is limited in scope, because of the
length of machine time, and therefore an approximate analytical solution is additionally obtained withthe aid of
a Laplace integral transformation, The sought fourth-degree temperature functions are, moreover, approxi-
mated by piecewise-linear functions with 20°C linear segments. The coefficients of this approximation, which
have been calculated beforehand, are given in a table, :

With the aid of these solutions, the influence is analyzed which the process conditions in the active
chamber of a horizontal enameling oven have on establishment of the temperature level and on the magnitude
as well as the direction of the temperature gradients across the coating thickness in the said two extreme
cases.

It is demonstrated that in the case of a coating transparent to thermal radiation one can estimate the
maximum rates of heat treatment with radiative —convective heat application to the wire —coating system,

The results of this study suggest that in enameling ovens for conductors treated in a melt it is expedient
to establish two zones with separate regulation of the basic process parameters (temperature and velocity of
the heat carrier, temperature at the wall surfaces of the active chamber as, e.g., in VRE-144 ovens of the

Italian Sicme Co. for enameling from a solution).

From economic considerations and limitations on the capabilities of materials, one can determine the
‘length of the first zone and prescribe its process parameters so that the temperature level in the conductor
will reach 80-90% of the optimum temperature for insulation curing.

In the second zone must be established the optimum magnitude and the necessary direction of the tem-
perature gradient across the coating thickness so that, while the optimum temperature level is maintained in
the conductor, the insulation layer will cure properly.

Dep.No. 1367-79. (Article received January 31, 1979; abstract received
Japuary 31, 1979.)
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ASYMPTOTIC SOLUTION TO THE PLANE STEADY-STATE
PROBLEM IN THE THEORY OF HEAT CONDUCTION WITH
A BOUNDARY CONDITION OF THE THIRD KIND APPLIED
TO A CYLINDRICAL PIPE BURIED IN SOIL

B. A, Vasil'ev UDC 517,946

Let it be required to determine the steady-state temperature distribution between an infinitely long cir-
cular cylinder and a plane target to it, when the surface of the cylinder emits a uniformly distributed thermal
flux and the plane surface is cooled according to Newton's law by a medium at zero temperature {1]. With the
aid of a Fourier integral transform in a system of degenerate bipolar coordinates, this problem can be reduced
to the equation

2sh v
chiv

cthv
. M(v) = —

M (V) —ha , O<v <o, 1)

to be solved for the boundary conditions
M(v) =O(v1+8), v -0 e>0, li_!rfx M (v} =0,
Vrfoo

where M(v) is an auxiliary function, unknown, and h is a positive constant; 2 is the cylinder diameter.

For low values of the parameter ha Eq. (1) reduces to a Fredholm integral equation of the second kind,
which can be solved by the method of successive approximations. The kernel of the solution appears interms of
modified Bessel functions [2]. Forhigh values of the parameter hg, the solution to Eq. (1) is sought in the form
of an asymptotic series

M@= My ) (ha) ™" @)
h=1
The terms in series (2) are successively determined from the recurrence relations
2vsh? ”
My (v) = __E‘%V_V » My, (v) = v thvd, (v).

After the solution to Eq. (1) has been found, the temperature distribution over the plane can be written as

'T(ﬁ)=—n%{,:—a*j‘M(v)

ctl:w cos vBdv } ,

where K is the thermal conductivity; @, thermal flux per unit time per unit length; and 8, curvilinear coordi-
nate of points on the tangent plane,

LITERATURE CITED

1.  B. A, Vasil'ev, Inzh, -Fiz. Zh., 12, No. 6 (1967).
2. N. N. Lebedev, Special Functions and Their Applications, Dover (1972),

Dep.No, 1378-79. (Article received May 22, 1978; abstract received
March 11, 1979.)

1115



CALCULATION OF TRANSIENT TEMPERATURES IN
SYSTEMS OF PLATES AND BEAMS

V. F. Kravchenko and V., M. Yudin UDC 536.24,02

Under consideration is the problem of heating a plane system of N beams and M rectangular plates
joined at R nodes and along K lines, on the assumption that the system contains U closed cavities of arbitrary
shape.

The thermophysical properties of the materials depend on the temperature, and the thermal conductivity
of the materials of plates, moreover, may be anisotropic.

At the lateral surfaces of the beam as well as at the boundaries of the plates there can oceur various
thermal processes: aerodynamic action, convection, natural convection, radiative heating, heating by a given
thermal flux, intrinsic radiation, radiative heat transfer through the internal cavities, also any physically
possible combination of these processes.

The system of equations describing the propagation of heat through such a structure consists of N equa-
tions of heat conduction for the beams, M equations of heat conduction for the plates, and U systems of integral
equations of radiative heat transfer through the internal generally nonconvex cavities,

The boundary conditions at the joining nodes and lines are stipulated in terms of equal temperatures of
contiguous elements and zero sum of thermal fluxes at each joining node and line.

The problem is solved by the implicit scheme in the method of elementary heat balances. Inasmuch
as the temperature dependence of the thermophysical properties is taken into account as well as intrinsic
radiation and radiative heat transfer through the cavities, the system of difference equations is written for
being solved by the iteration method. The accuracy of the solution is improved by approximating the bound-
ary conditions at the ends of the beams in the second order [1]. The locally uniform scheme is used for dif-
ference approximation of the equations for the plates.

The system of integral equations of radiative heat transfer is algebraized with the aid of Markov quad-
ratures, according to the method shown in [2]. '

As a result, on each time interval there appears a system of algebraic equations constituting a set of N
tridiagonal subsystems for the temperatures of beam elements and 2M fridiagonal subsystems for the tem-
peratures of plate elements, interconnected by equations for the temperatures of the joining nodes, also not
connected with them and with one another U subsystems of equations for the density of incident thermal flux.,

For the solution of this system there has been constructed an iteration process with respect to the tem-
peratures of the joining nodes which also takes care of nonlinearities. The subsystems of equations of radia-
tive heat transfer are solved by the method in [2] and the tridiagonal subsystems are solved by the elimination
method.

A program in the FORTRAN language has been written on the basis of this algorithm and heating of a
rectangular caisson is calculated consisting of a three-stringer upper panel and a smooth lower panel.
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DYNAMIC TEMPERATURE FIELDS IN HOMOGENEOUS
HOLLOW SPHERICAL BODIES

V., V. Semenyuk and M. P, Lenyuk UDC 536,21

The solution of classical problems in the theory of linear thermoelasticity requires that the structure
of the true temperature field during highly nonsteady processes be known. The temperature field in an iso-
tropic homogeneous hollow spherical body D = {r, 8, 9), Rysr = Ry, 0=s8=m,0=¢= an} during such pro-
cesses is described by the scalar quantity T which happens to be the solution to the generalized (hyperbolic)
heat-conduction equation [1]

A
+ ":2— {”é%‘[(l — W) ‘%E]-l— l——l-p,z *%Z-}) =Ff{& 1 @), p=cosb @
for the initial-boundary conditions
Thymo =l 0, 50| = b 9, @
a a : .
(hil 5 Thi 737_+hjs) Tlreg, = (= V504 @) =12 3)

and the uniqueness conditions with respect to (p, 8).

The solution to problem (1)-(3) is constructed with the aid of principal solutions (fundamental functions)
of the problem in the form

t  °x +1 R,
T=Sdrj daf dnSE(t~r; roo; e M P Y2y (T, o, M @) dp
0 0 —1 R,
t 2m -l
tfarfdaf W ¢—rnwm o @wuE s @ F W= nw )
0 [} —1

21 41 R, 4)
X, dnt { da{ dn ] K@ rom 99 [fG @
] —1 R,
52 R 2z 1 Re
+ 'i;?_:‘fz(Pr 0, a)]pzdp%— 5;5‘ day dnj Kt ro0; b % 9, o) fylp, n, @) p%dp.
0 ) | Ry

A significant role in the construction of fundamental functions E, K, and W+ of problem (1)-(3) is played
by the finite Legendre—Fourier integral transformations, forward Ay, and inverse A;rlm’

+12m o
Anm (@0 W1 = | { F@, w) &P () dod = fam, (5)
-1 0
_ 1 c C fnme—im(ypzl (1)
A [foml = —n‘ReE E 8mWEH‘P, u, (6)
m=0 n=0 .

where an(u) is the associated Legendre function of the first kind [2],

=, m=0 2(n 4 m)l

— ! 2 . m 12— h
&y = 3 WPy (Wil @1+ D(n—m)l is the norm squared.

1117



Operator Apq, together with the Laplace integral operator L [3] facilitate reduction of the three-dimensional
problem to a one-dimensional one.

Parameters hij i, j =1, 1, 3) make it possible fo extract from expression (4) the solutions to problem (1)-
(3) for any combination of the first three kinds of boundary conditions stipulated at any of the surfaces r =
R ¢ =1, 2), while the nonnegative arbitrary parameters b;, b; make it possible to obtain purely undular
(b1 ~ 0) as well as ordinary (parabola) (b; =1, b, — 0) temperature fields.

As an example the case where sphere D contains no heat sources (f; = 0) is considered, its initial tem-
perature is zero (f; = f; = 0), its boundary r = R; is maintained at zero temperature, and its boundary r =R,
is heated according to the law ¢, = t;S.(t) (1 —u)'i/ 2. with S4(t) denoting the asymmetric unit function.
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TEMPERATURE FIELD OF A BURIED PIPELINE

B. A. Krasovitskii UDC 536,242

The transport of many products over pipelines is associated with intensive heat exchange between the
pipeline and the surrounding ground. The hydrodynamic characteristics of flow during pumping of heated
crude oil or liquefied and cooled natural gas are most intimately related to the temperature of the stream.
Pipeline transport of water, mixtures and suspensions on a water base, or other freezing fluids through cold
grounds requires careful forecasting of the temperature field so that clogging of the pipeline can be prevented,.
The heat transfer processes are particularly intensive during the startup period, characterized by the largest
temperature drops and appreciable nonsteadiness.

The magnitude of thermal flux passing to the ground determines the rate of temperature change in the
product along the pipeline and depends on the temperature field of the ground around the pipeline. This tem-
perature field is determined by two factors: perturbation-generating effect of the pipeline, whose temperature
is generally different from the natural temperature of the ground, and periodic changes in the natural tempera-
ture of the ground due to seasonal fluctuations of the air temperature. Here the problem of thermal interaction
between a pipeline and the surrounding ground, taking these factors into account, is formulated mathematically.
The fundamental system of equations is simplified so that simple algorithms of its solution can be constructed.
An approximate solution for the temperature field of the ground around a buried pipeline is found in the form
combining the solutions to axisymmetric problems of thermoelasticity, The latter solutions are obtained by
the integral method. In this way the expression for the thermal flux in the ground can be written in a closed
form. For the purpose of estimating the accuracy of this solution, it is compared with the results of a numeri-
cal solution.

The numerical solution was obtained by conformal mapping of the given region into a unit square. The
heat-conduction problem within the conformal region was solved by the locally uniform difference scheme. A
comparison of the results indicates that the method proposed here gives an error not exceeding 6%.

Dep.No.1372-79, (Article received November 20, 1978; abstract received
February 26, 1979.)
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EFFECT OF THE STEFAN FLUX ON THE HYDRODYNAMICS
AND THE HEAT TRANSFER INVOLVING AN
EVAPORATING SPHERICAL PARTICLE IN MOTION

B, I. Abramzon, B. M. Abramzon, UDC 532,516
and G. A, Fishbein '

A study is made of the role which the Stefan flux plays in evaporation of a single droplet in a stream
blowing on its surface at a constant velocity or at a velocity not known beforehand but determined from the
solution to the equation of convective diffusion.

The evaporation process is assumed to be quasisteady, the vapor near the surface to be saturated and
its concentration to be a function of the droplet temperature only. The physical properties of the vapor —gas
mixture near the droplet are assumed to be constant and to have been evaluated at some mean temperature
and mean vapor concentration in the stream. Internal movement of the liquid within the droplet is assumed
to have no effect on the external streamlining,

On the basis of these assumptions, the problem reduces to the following system of Navier —Stokes equa-
tions, equations of diffusion, and heat-iransfer equations for the vapor —gas mixture

Npe [ 0% d EXp ) op a ( EWp. )} .
9 9 L 0 = Ey,
2 [ o 90 \r2sin?8 ) 06 or \ risine J)° b @)
where 2o 2 10
E'= 35 2 38 (sinB )’
NpeNget 9z vy 02 1 9 9z 1 3 z \
2 \" % T, ) 2 or (’ or ) Asin® 90 (s“‘e 5 )
NgeNpr( o0f  vg Of 19 at 1 3 ot
/o Nt BRSO S i ST = {sing ——1 .
2 ("’ or T 7 ae) 2 or (' ar) T Trsine 00 (Sme ae> 3

Here ¢ is the flow function; Z = (C —Co)/(Cl—Co), relative concentration; C, relative mass concentration of
vapor in the gaseous mixture; t = (T —Ty/(Ty—T,), relative temperature; T, absolute temperature; NRe, Rey-
nolds number; Np,, Prandtl number; and Ng¢, Schmidt number. Subscript "0" refers to the droplet surface;
subscript "1" refers to the oncoming stream.

The relation between the flow function and the blowing stream velocity at the surface of a sphere is

[¢]
P=— fVR (6) sin 8. (4)
5

The quantity VR can be defined according to the expression

14 % shy,

= 0
R NReNsc

where parameter o = (C,—C;)/(1—C,) determines the intensity and the direction of the Stefan flux; shy is the
local mass-transfer coefficient.

The problem is solved by the finite-differences method for values of the Reynolds number NRe = 100
with either uniform or nonuniform injection of mass at the droplet surface. The coefficients of friction and
frontal drag are calculated as functions of NRe and VR. Determined are the characteristic features of the
zone with reverse-vortical flow during injection and suction respectively. Obtained are also the values of
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local and mean heat and mass transfer coefficients, these values being compared with experimental data cor-
responding to a Stefan flux parameter within the ~0.5 = ¢ = 0.5 range,

Dep.No. 713-79. (Article received April 24, 1977; abstract received
December 25, 1979.)

EQUALIZATION OF A STREAM BY MEANS
OF A HONEYCOMB

A. S. Mazo UDC 532.555/56

Under consideration is the equalizing effect of a honeycomb with a uniform (over the cross section) drag
on nonseparation flow of an incompressible fluid with an arbitrary initial velocity profile in a channel of uni-
form cross section. The problem is solved by the methods of hydraulics, on the basis of the following flow
pattern. Along the inlet section 1 at some distance before the honeycomb and at section 2 immediately behind
the honeycomb there is a constant static pressure and a zero transverse velocity. The flow rate and thus also
the mean velocity alongthe honeycomb tubes remain constant so that the flow redistribution must occur before
the honeycomb. The total pressure in the jet filaments is, meanwhile, assumed to remain constant. Con-
gidering the case of only a slight nonuniformity, the author solves the problem by the method of perturbations,
accurately down to terms of second-order smallness. The stream is subdivided into n elementary jet fila-
ments and for each of the latter is written the continuity equation as well as Bernoulli equation, with losses
in each jet filament flowing through the honeycomb assumed to be proportional to the velocity in the honey-
comb tubes squared (the velocity being equal to the velocity u, at the outlet). With a given velocity profile at
the inlet and with the geometrical condition of constant channel area, this yields a closed system of algebraic
equations.

An analysis of the equations in this approximation reveals that the deviation of velocity from the mean
one |u; — uy| decreases in the same proportion in each jet filament upon passage through the honeycomb, The
magnitude of the nonuniformity factor ¢, behind the honeycomb does not depend on the shape of the initial
velocity profile, but is related to the initial nonuniformity factor §; and the drag coefficient ¢ in the honey-
comb according to the expression

Y1
Y2 = T+t
for the case of square-law drag (£ = const). Complete equalization of a stream is thus possible only when ¢ —
», This conclusion disagrees fundamentally with the well-known concept about meshes, where complete
equalization occurs when ¢ = 2 and the velocity profile becomes inverted when £ > 2, Physically this is
attributable to the fact that during passage through a mesh (unlike through a honeycomb) the incidence angle
does not change and, therefore, the drag here remains proportional fo the square of the arithmetic mean of

the velocities before and after equalization.

In the case of a linear drag law, corresponding to laminar flow, equalization of a stream proceeds ac~
cording to the relation

R
1+ 0.52,

Y=
(¢ denoting the drag coefficient in a uniform stream with the same flow rate) so that producing the same
equalization effects requires a "laminar" honeycomb with double the drag of a "turbulent" one.
An array of honeycombs one behind another makes equalization feasible with lower drag losses.

These theoretical results have been compared with experimental data for the case of square-law drag,
‘A close agreement was found between the calculated and the measured dependence of the nonuniformity factor
on the honeycomb drag.

Dep.No. 388-79. (Article submitted August 22, 1978; abstract received
December 4, 1978.) :
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CALCULATION OF SURFACE FRICTION ALONG INITIAL
PIPE SEGMENTS IN A TURBULENT BOUNDARY

LAYER WITH WHIRLING OF THE STREAM AT

THE INLET

V. M. Sobin UDC 532.517.4

An approximate method of calculating the surface friction in a turbulent boundary layer of an incompres-
sible fluid with whirling of the stream at the inlet is shown here, ‘

The problem is solved with the aid of the integral method [1], which happens to be conservative with
respect to the exact velocity profile when the boundary region is correctly simulated. The equations of
motion within the boundary layer, written in a cylindrical system of coordinates with appropriate boundary
conditions, are reduced to a system of two nonlinear ordinary differential equations of the first order with
respect to parameters A and s of surface friction, For the axial component of velocity in the boundary layer
is used the universal logarithmic profile ut = 2.5 log y++ 5.5 and for the tangential component of velocity is
used the profile —wt =uts. Here s is regarded as a function of x only. After estimating the magnitudes of the
terms in the resulting equations, the latter can be simplified to

) o g —
8+ (A2 —5A - 12,5) — - % 58*+A (b — 2.5) = Npe . )
dx iy

With the approximations

8+ (A2 — 5 - 12.5) = 1.9 exp (0.5451), )
56+A (A — 2.5) == 11.1 exp (0.5454) @

Eq. (1) admits an analytical solution.

It is demonstrated that in many practical cases the velocity uy = const., Taking this into account, the
equation for s becomes

d . 14
_S_+[ Nre 2, h]s=o

dx | SRR —BA125) A dx )

and can, with the use of the first approximation (2) be easily integrated.

Finally, for cf and s are obtained the explicit expressions

0,594 4
=TT, N
lnz(———? x) 4

o

C
S=so*;;—°-, {5)

with the constants corrected on the basis of experimental data.

It is noteworthy that profile (4) describes closely also the distribution of the total coefficient of surface
friction and profile (5) very accurately predicts self-adjointness of whirling angles in the stream with respect
to the Reynolds number,

NOTATION
x = x/d is the dimensionless longitudinal coordinate;
ug is the value of velocity u at the edge of the boundary layer;
8 is the tangent of the whirling angle relative to the pipe axis within the immediate vicinity of the

wall;
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Typ is the axial component of shearing sfress at the wall;
Xps Sg, and Ay are the values of x, s, and A at the inlet section;

ut =gyt =

Y /v; ux = VT1/p; cg=

27107{7;}3; A=upux =

@/cpV*; Uy = upug s

6+ = exp[(A — 5.5)/2.5];

Zy = exp (0.545My);

NRe = uavd/v.
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VELOCITY FIELD INSIDE A CYLINDRICAL VESSEL
WITH A ROTARY STIRRER AT THE BOTTOM

Yu. V. Martynov

The flow of a liquid inside a cylindrical vessel with a rotary stirrer near the bottom is analyzed in the
case of a small ratio of cylinder radius to liquid level in the vessel and a stirrer with many blades,
assuming that the funnel forming as a result of intensive stirring reaches the bottom. The stirrer blades
are extended toward the bottom so that, owing to the small clearance between stirrer and bottom, there will
occur only insignificant changes in the stream. The funnel is approximated with a cone, According to data
in [1], the stream of liquid flows from underneath the stirrer radially outward and at the wall turns vertically
upward, whereupon it is sucked in by the stirrer. Considering that the concave surface of the vessel has a
stabilizing effect on the stream [2] and that no turbulence of the stream occurs at the free surface, one can
assume the flow in the mixer vessel to be nonturbulent (except within a small region around the stirrer).
First the flow in the entire region is calculated, whereupon the region with high turbulence is removed. The
equation for the flow function describing an axisymmetric stream of a nonviscous incompressible fluid is
given elsewhere [3], in a system of spherical coordinates with the origin at the vertex of the funnel cone, and
zero boundary values are stipulated at the cone axis as well as at the cylinder surface. Furthermore, follow-
ing the procedure in [3], it is assumed that &() = (kg2 + 2+ b)W/2, F() = ay + ayd + a,9%/2, and k, ¢, ay, ay, a3,
b = const, After a change of variables z = £2sin’$, x = cos®¥ —cos#,cosé, expansion of the coefficients of the
derivatives into Taylor series, with small terms disregarded inasmuch as cos#; =~ 1, reduces the problem to

a7 . 1oy 4 Oy ,
929% +x‘(]6£-.—4)7 —a—xz——l--—z—— a— —i—klpTC—l—zaztp—i—zal_O,

—-—I.l_ 2 __ —
4z oz [5x 4 (56 — 2) x]

Y@ =9I, )=p(0, 2 =0,

Vp =& (P)/(Esin 9), vy = (E? sin §)~1 9y/03,
vy = — (§ sinv) =2 Jyp/0E.

Its solution is sought in the form of a Taylor series ¢= Ex"fn (2)/nt, with f4(z) = 0, since the boundary condi-
n==1

tions make ¢(0, x) = 0. After the real part has been extracted, the solution for the first term of that series

‘(all other terms being relatively small) is written as ¥ ($, £ = cos & (cos & ~cos &) C;NRe{exp(iva,i2sin®s/2)2(1 —

(5/3)e + K/(4Vay), 2—be; — iVa,t?sin®d)}, Here @, b, z) is the Kummer function. The constants k, a,, ¢;, b

are determined from the system of transcendental equations ®(1— (5/3)e + k/(4iva,), 2—5¢; —ivay) = 03 8y (3, &)/

3¢ = 0 (the first one being introduced so as to satisfy the second boundary condition, the second one valid
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Fig. 1. Equidistant lines of
secondary flow, plotted in 0,01
steps beginning from 0,01 (flow
line nearest to the free surface).

inasmuch as the jet stream flowing from underneath the stirrer is axisymmetric) and the system of algebraic
equations (k2(8y, &) + o2 =1, vE (35, E/Vp (85, &) = & (the first one equating the azimuthal velocities of
blades and liquid near the stirrer, the second one quantitatively relating the azimuthal motion and the axial
motion), The value of o is either determined experimentally or taken from published sources; it depends on
stirrer and vessel design parameters. For choosing the necessary root of the system of transcendental equa-
tions there is derived an estimating equation. It is obtained by equating the arithmetic mean velocity, cal-
culated on the basis of four velocities (at the tip of a stirrer blade, at the center of a lateral surface, at the

free surface near the stirrer, and at the upper level of the liquid) to vy = ] (kp® + b)l/z/(f sin $)ds/S = 1,69

kR8T + b2 = vy = EB(1/, + 2 + 1/k)/4. s

On the basis of the expressions derived here, a calculation is made of the velocity field in a mixer
vessel with the dimensions 8 = 21%; 2¢, = 2.4 £; = 0.3; £ = 0.8, as shown in Fig, 1. A numerical solution of
the system of transcendental and algebraic equatious yielded the values a, =—4,365, k = 0.609, ¢; = 0.302,
b = 0.998, with 1,06 having been the estimated value of b.

NOTATION
o is the flow function;
Cy is the constant;
& is the axial angle;
£ is the radius;
() is the circulation;
F@) is the Bernoulli constant;
VEs Vg, Vg ' are, respectively, the radial, azimuthal, and axial components of velocity;
& is the blade width;
& is the blade length;
&g is the half-height of the liquid level;
Vi is the arithmetic mean azimuthal velocity;
I is the projection of the point where funnel surface and stirrer surface intersect on
the vessel axis;
Q is the rate of secondary flow of the liquid;
ay, ay, a,, k, ¢, b, « are the constants;
g4 =1 is the vessel radius;
v = 1 is the azimuthal angular velocity of the tip of a stirrer blade;

b = b5+ (L-£5)/2;
= 1-cos’d; & = (& + %
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Eg = (5 + E/DY2 8y = 1/2; 8, = arctan [£y/(2£5)];
&5 = arctanéy;

s is. the cross—sectional area of the liquid in the mixer
vessel in the plane of a radius and an axial angle.

LITERATURE CITED

1, F. Strenk, Mixing and Devices with Stirrers [Russian translation], Khimiya, Leningrad (1975).

2. B. P. Ustimenko, Processes of Turbulent Transport in Rotational Flow [in Russian], Nauka, Alma-Ata
@9 ' '
3. O. F, Vagil'ev, Basic Mechanics of Helical and Circulatory Flow [in Russian], Gosénergoizdat, Lenin~
grad (1958).

Dep.No. 387-79. (Article received July 29, 1977; abstract received
October 2, 1978.)

HEATING OF A MATERIAL BY A SURFACE SOURCE
AND AN INTERNAL SOURCE OF HEAT

V. M. Kulyapin and A, I. Pechenkin , UDC 536.248.2
Under consideration is the one-dimensional nonlinear problem of fusion and evaporation of a material by
a surface source and an internal source of high-density thermal flux. The temperature profile in the liquid

phase satisfies the equation of heat balance and, according to the analysis in [1], is

8 (4 1) =Ty +

Tm— T +(qv 1 4T,

vdmy 1
XZX, ™, 4, dt)l(x Xo) (8 Xo) = (1= Xof)- »

The trend of processes occurring here will vary depending on the relation between surface source and
internal source, The width X — X, of the molten zone is

x—xo=_-‘;—U(t*). | @)

From the subsequently given equations will follow that U{* < 0.

Evolution of heat within the molten volume,

with lal < 0.25 A
=L QUL — ! (m 20 U 41—V I—¢al —1n 1— V14l ); (3)
2 lad 2l V1I—4jaf 2 U+ 14+ Viaf 14 V1—2]a /
with lal> 0.25 '
1 1 2o U 41 1 )
e —In(U2 U+ 1) — : ~— arctg — . “)
2 jal P2 +UA el V4 fu—1 (arc V&1 g1/'4104—1
Absorption of heat within the molten volume, with ¢ > 0
g — T da— 1
o 1_-_ (m Viido 42U —1 o Viftia—1 )—E—m_(l+U~aU2), (5)
20 Y1+ 4a V1‘+4a~—-2aU—|—1 Vitdaii *
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It is evident, according to expressions (3)-(5), that the molten zone stabilizes during absorption of heat
within its volume and during evolution of heat with|al< 0,25, As the internal source increases, the fusion pro-
cess becomes nonsteady.

NOTATION
q is the surface density of thermal flux, W/cm?;
dy is the volume density of thermal flux, W/em?;
X,(t) is the breakdown boundary, cm;
X(t) is the fusion boundary, cm;
X —X%X, is the molten zone, cm;
X is the running space coordinate, cm;
Ty Tm,T  are, respectively, the temperature of the breakdown surface, melting point, and initial tempera-
ture, °K; .
t is the time, sec;
A is the thermal conductivity of the liquid material, W/em - deg C;
ay is the thermal diffusivity of the liquid material, cm%/sec;
c is the mean specific heat, J/g-deg C; '
Ly is the latent heat of evaporation;
L is the latent heat of fusion;
0 is the density, g/cm3;
$ is the temperature profile in the liquid phase.
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SOLUTION OF THE THREE-DIMENSIONAL TRANSIENT
PROBLEM OF HEAT CONDUCTION IN BODIES OF
INTRICATE SHAPES

V. M. Kapinos and Yu., L. Khrestovoi UDC 621.165

Determination of the temperature fields in bodies of intricate shapes reduces to a solution of the three~
dimensional transient problem of heat conduction for irregular regions. This is often done by grid methods,
When problems for irregular regions are solved with the aid of equations which have been derived for regular
(rectangular, cylindrical, spherical) regions, then difficulties arise in referring the boundary conditions to
grid points on the boundary.

It is, therefore, proposed to transform anirregular regionto a regular one by a linear change of coordi-
nates which, on the onehand, will eliminate attrition of the boundary conditions and on the other hand will estab-
lish conditions making it easy to construct algorithms of temperature field calculations for bodies of intricate
shapes.

The heat-conduction equations and the appropriate boundary conditions, in a system of cylindrical coor-
dinates, for a region bounded by the intersection of surfaces r =R(z, ¢) and r = ry(z, ¢) which have continuous
first derivatives with planesz =0, z =1, ¢ = 0, ¢ =1l at R > ry have, accordingly, been transformed by the
change

r—r,

0
» Xp=2, %3 =0,

R—r,

Xy=a-+b
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where a and b are determined from the conditions r = ry, %y =a; r =R, % =ay, b =a-ay.

Therefore, a and ay are, respectively, the inside radius'and the outside radius of the reference region
constituting a part of a straight hollow cylinder of length I contained between two radial planes at angle II to
each other.

The new system of coordinates is not orthogonal with a nonzero Jacobian,

The heat-conduction equation in these coordinates is

1 "ot o ot 0% 9%t a2t a2t
—— =B, —5 4 By—— 4 By—s B — 4 By — 4+ Bg——— ,
a dt 1 axf 5 3, 0 P 5 0x,0x, + éx% + s@?xﬂ")x3
where
e e A oA L By .
By=A4 A1+ A3/r% By=—+ +*;;'5;)‘, By=1, B, =24y
dxy dxy Jxy
= 1/r2 — 2. 4 — —L tad § =t
By =1/ By=24yr%; A=k, Ay=—1 Ay= o

The boundary conditions, after transformations, become

) A "ot ot 1 o

=5 Gt =Acos(n )+ Ayeos (n, 9+ Teos(n, Q5 008 2) 5 e, @) T
with the heat-transfer coefficient oy, and the temperature of the medium t¢ both being functions of time as well
as of the coordinates, with A denoting the thermal conductivity, a denoting the thermal diffusivity, and n denot~
ing the outward normal.

The resulting system is solved numerically according to the efficient additive scheme with a floating
weight.

The region of the temperature field determination is described as follows. The body is subdivided into
segments by radial planes and planes perpendicular to the z axis, The outside surface and the inside surface
are described by a conical surface or a plane surface. The grid is constructed so that the calculation points
lie only on the region boundaries and never on the segment boundaries.

Dep.No, 712-79, (Article received June 28, 1977; abstract received
October 26, 1978,)
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ROLE OF CAVITATION IN THE ULTRASONIC
CAPILLARY EFFECT

V. G. Barantsev and V, N, Motorin UDC 534,14

A series of experiments was performed for the purpose of studying the effect of ultrasound on the capil-
lary rise of liquids. Particular attention was paid to physical factors causing the pressure head to increase
under the influence of ultrasound,

An experimental apparatus was set up for this which included a system of measurements with recording
of the instantaneous velocity of the liquid along the capillary on a motion picture film. The experiments
were performed under the following conditions: radiator power N = 25 W, vibration frequency f = 41 kHz,
diameters of the capillaries d = 0.21, 0.61, 1,16, 2.0, 3.0 mm. As the active medium were used water, ethyl
alcohol, and transformer oil. The amplitude of sound pressure in the liquid was measured with a hydrophone.
Test results are shown for Py =1.58 atm.

The results of these experiments revealed the trend of changes in the velocity of capillary rise with time,
depending on the tube diameter and on the kind of liquid. The rise velocity is dependent on the distance
from the radiator to the base of the capillary. The experimental data are presented in the form of graphs
h = £(1), T denoting the interval of time within which the liquid level had risen by the height h, At the same
time was also measured the maximum rise of the liquid level depending on the tube diameter. In the capillary
with a diameter of 3.0 mm it was found to be 105.4 times higher than the equilibrium rise of liquid without
ultrasound.

Cavitation in the liquid was observed visually and recorded on photographic film through a microscope
with a camera attachment., In all the experiments the velocity of capillary rise was found to become highest
with the base of the capillary placed in a cavitation cloud or directly above it., The readings also became
stable under this condition.

The phenomenon of cavitation was ohserved only at ultrasound intensities above the threshold level, As
the amplitude of acoustic waves dropped below that threshold, cavitation in the liquid ceased and the liquid
column dropped to the equilibrium height of capillary rise without ultrasound.

The results of these experiments confirm the conclusion that acoustic cavitation in the liquid is the cause
of the ultrasonic capillary effect,

The authors propose a physical model which, in their view, explains the process of capillary rise of a
liquid under the influence of ultrasound, namely some truncation of the normal amplitude of ultrasonic waves
during the rarefaction phase as a result of ultrasonic cavitation in the liquid. It is suggested that acoustic
cavitation in a liquid results in some truncation of the amplitude of ultrasonic waves during the rarefaction
phase. The truncation level is determined by an empirical coefficient (%) which depends on the conditions of
the experiment: diameter of the capillary tube, kind of liquid, ete,
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GENERAL SOLUTION TO THE THERMOELASTICITY
PROBLEM FOR AN ASYMMETRICALLY
HEATED SOLID CYLINDER

A, G. Sabel'nikov, K. I. Skorikov, UDC 539,377
and A. N. Strigunov

Under consideration is an infinitely long solid cylinder with the radius R asymmetrically heated in the
circumferential direction.

Its state of thermal stress is defined by the stress function & =®(r, ¢, 7), which is the general solution
to the nonhomogeneous biharmonic equation

_lxp
A(AD) =T+u Aft. @)

For determining the components of the stress tensor oij(i, j=r, ¢, z), the temperature field t=t(r, ¢, 7)
is represented as the sum of two components:

tr, @, ) =4{r, 1) +b(r, 9, T). (2)

Here t(r, 7) is the symmetric component of the temperature field and ty(r, ¢, 7) is the asymmetric compo-
nent.

The stresses calculated according to Eq. (1) will then appear as the sum of two solutions to the thermo-
elasticity problem, one of them corresponding to t;(r, T) and found by conventional methods. The other solu-
tion, corresponding to ty(r, ¢, T), is determined from the thermoelastic displacement potential & = &(r, ¢, 7),
which satisfies the equation

20="T i g, 0, 3)
l—p

and from the general solution to Eq. (1) without the right-hand side. The components of the stress tensor

are expressed in dimensionless form. From the general expressions given here can be obtained those for
special cases which correspond to symmetric heating of an infinitely long solid cylinder and which are identi-
cal to the well-known expressions for these casges.

An example is considered to illustrate the practical application of these solutions, It is based on ex-
perimental data on heating of solid cylindrical billets by impinging jets in a high-speed convection furnace.

NOTATION

is the radial coordinate, m;

is the angular coordinate;

is the time, sec;

is the Poisson's ratio;

is the coefficient of thermal expansion, 1/deg C;
a =(8%/8r®) +(1/r) . s the Laplace operator.

(8/8r) + (1/x2) . (32/3¢%)
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